DIAT-RadSATNet—A Novel Lightweight DCNN Architecture for Micro-Doppler-Based Small Unmanned Aerial Vehicle (SUAV) Targets’ Detection and Classification

计算机科学 卷积神经网络 人工智能 失败 深度学习 转子(电动) 模式识别(心理学) 工程类 电气工程 并行计算
作者
Harish Chandra Kumawat,Mainak Chakraborty,A. Arockia Bazil Raj
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:39
标识
DOI:10.1109/tim.2022.3188050
摘要

Due to the smaller size, low cost, and easy operational features, small unmanned aerial vehicles (SUAVs) become more popular for various defence as well as civil applications. They can also give threat to national security if intentionally operated by any hostile-actor(s). Since, all the SUAV targets have a high degree of resemblances in their micro-Doppler (m-D) space, their accurate detection/classification can be highly guaranteed by the appropriate deep convolutional neural network (DCNN) architecture. In this work, a lightweight novel DCNN model (named “DIAT-RadSATNet”) is designed for the accurate SUAV targets: RC plane, 3-short-blade rotor, 3-long-blade rotor, quadcopter, bionic bird, and mini-helicopter + bionic bird; detection/classification based on their m-D signatures. A diversified, X-band (10GHz) continuous wave (CW) radar based, open-field-collected m-D signatures dataset (named as “DIAT-μSAT”) is used for the design/testing of “DIAT-RadSATNet”. A set-of new design principles is proposed through which multi-factors: layers, #parameters, floating point operations (FLOPs), no. of blocks, filter dimension, memory size, no. of parallel paths, and accuracy; optimization is applied via a series of in-depth ablation studies. The novel “DIAT-RadSATNet” module consists of 0.45M trainable parameters, 40 layers, 2.21Mb memory size, 0.59G FLOPs, and 0.21s computation-time complexity. The detection/classification accuracy of “DIAT-RadSATNet”, based on the open-field unknown dataset experiments, falls within 97.1% and 97.3%. A comparative analysis with state-of-the-art (SOTA) DCNN models evidences the betterness, more efficiency, and more accuracy of our novel “DIAT-RadSATNet” architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴子秋发布了新的文献求助10
1秒前
3秒前
华仔应助silong采纳,获得10
3秒前
HJJHJH发布了新的文献求助30
5秒前
dracovu发布了新的文献求助50
6秒前
木槿完成签到,获得积分10
7秒前
wmn给wmn的求助进行了留言
7秒前
8秒前
现实的新竹完成签到,获得积分10
8秒前
8秒前
9秒前
清脆半双发布了新的文献求助10
9秒前
12秒前
夏雪仁发布了新的文献求助10
12秒前
上官若男应助书生采纳,获得10
12秒前
科研通AI2S应助HJJHJH采纳,获得10
12秒前
阿玉发布了新的文献求助10
13秒前
北国潇湘发布了新的文献求助10
13秒前
14秒前
楼沁发布了新的文献求助10
14秒前
15秒前
15秒前
共享精神应助义气的行天采纳,获得10
16秒前
silong发布了新的文献求助10
17秒前
19秒前
Soojin完成签到,获得积分10
19秒前
19秒前
yy发布了新的文献求助10
20秒前
田様应助夏雪仁采纳,获得10
21秒前
大模型应助楼沁采纳,获得10
21秒前
georgia_qiao发布了新的文献求助30
21秒前
gglaoba发布了新的文献求助10
25秒前
DuesKing发布了新的文献求助10
26秒前
26秒前
Jasper应助yy采纳,获得10
28秒前
清脆半双完成签到,获得积分10
28秒前
sje完成签到 ,获得积分10
30秒前
32秒前
SaberLee完成签到,获得积分10
33秒前
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837147
求助须知:如何正确求助?哪些是违规求助? 3379372
关于积分的说明 10508693
捐赠科研通 3099072
什么是DOI,文献DOI怎么找? 1706778
邀请新用户注册赠送积分活动 821288
科研通“疑难数据库(出版商)”最低求助积分说明 772487