VCRNet: Visual Compensation Restoration Network for No-Reference Image Quality Assessment

图像复原 计算机科学 人工智能 图像质量 计算机视觉 补偿(心理学) 迭代重建 图像(数学) 质量(理念) 残余物 模式识别(心理学) 图像处理 算法 心理学 哲学 认识论 精神分析
作者
Zhaoqing Pan,Yuan Feng,Jianjun Lei,Yuming Fang,Xiao Shao,Sam Kwong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1613-1627 被引量:110
标识
DOI:10.1109/tip.2022.3144892
摘要

Guided by the free-energy principle, generative adversarial networks (GAN)-based no-reference image quality assessment (NR-IQA) methods have improved the image quality prediction accuracy. However, the GAN cannot well handle the restoration task for the free-energy principle-guided NR-IQA methods, especially for the severely destroyed images, which results in that the quality reconstruction relationship between the distorted image and its restored image cannot be accurately built. To address this problem, a visual compensation restoration network (VCRNet)-based NR-IQA method is proposed, which uses a non-adversarial model to efficiently handle the distorted image restoration task. The proposed VCRNet consists of a visual restoration network and a quality estimation network. To accurately build the quality reconstruction relationship between the distorted image and its restored image, a visual compensation module, an optimized asymmetric residual block, and an error map-based mixed loss function, are proposed for increasing the restoration capability of the visual restoration network. For further addressing the NR-IQA problem of severely destroyed images, the multi-level restoration features which are obtained from the visual restoration network are used for the image quality estimation. To prove the effectiveness of the proposed VCRNet, seven representative IQA databases are used, and experimental results show that the proposed VCRNet achieves the state-of-the-art image quality prediction accuracy. The implementation of the proposed VCRNet has been released at https://github.com/NUIST-Videocoding/VCRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
西红柿炒萝卜干完成签到,获得积分20
2秒前
2秒前
小也子完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
负责的方盒完成签到,获得积分10
4秒前
玥月完成签到 ,获得积分10
4秒前
6秒前
小青椒应助野性的柠檬采纳,获得30
6秒前
GB发布了新的文献求助10
6秒前
小也子关注了科研通微信公众号
6秒前
Luckyf发布了新的文献求助20
7秒前
任性的一斩完成签到,获得积分10
8秒前
科研通AI5应助孙鑫采纳,获得10
8秒前
万能图书馆应助沉静早晨采纳,获得10
8秒前
9秒前
曲意风华应助孙彦琪采纳,获得20
10秒前
uu应助潇洒的友易采纳,获得10
10秒前
yy完成签到,获得积分10
11秒前
SciGPT应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
MchemG应助科研通管家采纳,获得10
14秒前
LaTeXer应助科研通管家采纳,获得150
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
田様应助科研通管家采纳,获得10
14秒前
谢123完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087017
求助须知:如何正确求助?哪些是违规求助? 4302540
关于积分的说明 13408011
捐赠科研通 4127749
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264739
关于科研通互助平台的介绍 1198892