Clinical evaluation of a deep learning model for segmentation of target volumes in breast cancer radiotherapy

分割 乳腺癌 医学 放射肿瘤学家 放射治疗 卷积神经网络 癌症 医学物理学 人工智能 计算机科学 放射科 内科学
作者
P. Buelens,S Willems Ir,Liesbeth Vandewinckele,Wouter Crijns,Frederik Maes,Caroline Weltens
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:171: 84-90 被引量:5
标识
DOI:10.1016/j.radonc.2022.04.015
摘要

Precise segmentation of clinical target volumes (CTV) in breast cancer is indispensable for state-of-the art radiotherapy. Despite international guidelines, significant intra- and interobserver variability exists, negatively impacting treatment outcomes. The aim of this study is to evaluate the performance and efficiency of segmentation of CTVs in planning CT images of breast cancer patients using a 3D convolutional neural network (CNN) compared to the manual process.An expert radiation oncologist (RO) segmented all CTVs separately according to international guidelines in 150 breast cancer patients. This data was used to create, train and validate a 3D CNN. The network's performance was additionally evaluated in a test set of 20 patients. Primary endpoints are quantitative and qualitative analysis of the segmentation data generated by the CNN for each level specifically as well as for the total PTV to be irradiated. The secondary endpoint is the evaluation of time efficiency.In the test set, segmentation performance was best for the contralateral breast and the breast CTV and worst for Rotter's space and the internal mammary nodal (IMN) level. Analysis of impact on PTV resulted in non-significant over-segmentation of the primary PTV and significant under-segmentation of the nodal PTV, resulting in slight variations of overlap with OARs. Guideline consistency improved from 77.14% to 90.71% in favor of CNN segmentation while saving on average 24 minutes per patient with a median time of 35 minutes for pure manual segmentation.3D CNN based delineation for breast cancer radiotherapy is feasible and performant, as scored by quantitative and qualitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助小粘豆包采纳,获得10
刚刚
唐笑发布了新的文献求助10
刚刚
彭于晏应助CC采纳,获得10
1秒前
bkagyin应助诗轩采纳,获得10
1秒前
北北发布了新的文献求助10
3秒前
4秒前
科研通AI5应助故里采纳,获得10
7秒前
7秒前
哈哈一世完成签到,获得积分10
8秒前
辣辣发布了新的文献求助10
8秒前
8秒前
深情安青应助开朗以亦采纳,获得10
8秒前
9秒前
小蘑菇应助Jason采纳,获得10
9秒前
舒心的万声完成签到,获得积分10
10秒前
cherish发布了新的文献求助10
11秒前
11秒前
isukini完成签到,获得积分10
12秒前
NexusExplorer应助222采纳,获得10
12秒前
12秒前
14秒前
简单面包发布了新的文献求助10
14秒前
14秒前
14秒前
科研通AI5应助听雨潇潇采纳,获得10
15秒前
冉旭完成签到,获得积分10
15秒前
专注梦之完成签到,获得积分10
15秒前
小高完成签到 ,获得积分10
16秒前
香蕉觅云应助孙一莎采纳,获得10
16秒前
lierikafei发布了新的文献求助10
16秒前
科研通AI5应助李亚莉采纳,获得10
17秒前
yu完成签到,获得积分10
17秒前
复杂不二完成签到,获得积分10
18秒前
19秒前
HL发布了新的文献求助10
19秒前
诗轩发布了新的文献求助10
19秒前
我是老大应助xjp采纳,获得10
21秒前
21秒前
21秒前
Snowychen完成签到,获得积分10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635