Evidential Combination of Classifiers for Imbalanced Data

计算机科学 人工智能 机器学习 班级(哲学) 采样(信号处理) 可靠性(半导体) 数据挖掘 帧(网络) 无知 模式识别(心理学) 物理 计算机视觉 滤波器(信号处理) 电信 功率(物理) 量子力学 哲学 认识论
作者
Jiawei Niu,Zhunga Liu,Yao Lü,Zaidao Wen
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (12): 7642-7653 被引量:10
标识
DOI:10.1109/tsmc.2022.3162258
摘要

It remains an important research topic for the classification of imbalanced data. There exist some methods to solve this problem, such as hybrid-sampling, over-sampling, and under-sampling. Each method has its own advantage, and different methods generally provide some complementary knowledge. We want to combine these three methods at the decision level in an appropriate way for achieving as good as possible classification performance. Evidence theory is expert at representing and combining uncertain information. So a new method called an evidential combination of classifiers (ECC) is proposed for dealing with imbalanced data. The classification result generated by different strategies (i.e., hybrid-sampling, over-sampling, or under-sampling) may have different reliabilities for query patterns. A cautious reliability evaluation rule is developed for each classification result based on the close neighborhoods. After that, the classification result is revised with a new belief redistribution way according to the reliability evaluation, and the probability/belief of one class can be partially transferred to other classes as well as the total ignorance, which is defined by the whole frame of classes. By doing this, we can reduce the error risk of each classification method. Then, the revised classification results from different methods are combined by evidence theory to make the final class decision. The effectiveness of the ECC method has been demonstrated using several experiments, and it shows that ECC can effectively improve the classification performance comparing with other related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈家兴完成签到 ,获得积分10
2秒前
协和_子鱼完成签到,获得积分0
3秒前
3秒前
闾丘德地完成签到,获得积分10
4秒前
5秒前
辛勤难敌完成签到,获得积分10
6秒前
6秒前
李健应助优雅的凝阳采纳,获得10
7秒前
Tameiki完成签到 ,获得积分10
9秒前
wnwn完成签到 ,获得积分10
9秒前
haishixigua完成签到,获得积分10
10秒前
利用好发布了新的文献求助10
10秒前
李国铭发布了新的文献求助10
11秒前
11秒前
愉快的楷瑞完成签到,获得积分10
12秒前
13秒前
小满完成签到,获得积分10
13秒前
小蘑菇应助MetaMysteria采纳,获得10
14秒前
15秒前
瑾木完成签到,获得积分10
16秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
RenJG完成签到,获得积分10
22秒前
23秒前
罗怡昕发布了新的文献求助10
23秒前
Huzhu应助机智的瑀采纳,获得10
24秒前
WangQ完成签到,获得积分10
24秒前
25秒前
韩晨晨发布了新的文献求助20
26秒前
聚散流沙完成签到,获得积分10
27秒前
28秒前
wnwn发布了新的文献求助10
32秒前
34秒前
无花果应助小熊天天学习采纳,获得30
34秒前
心心子完成签到 ,获得积分10
34秒前
温婉的夜山关注了科研通微信公众号
35秒前
36秒前
TGOO完成签到 ,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478271
求助须知:如何正确求助?哪些是违规求助? 4579994
关于积分的说明 14371755
捐赠科研通 4508300
什么是DOI,文献DOI怎么找? 2470593
邀请新用户注册赠送积分活动 1457382
关于科研通互助平台的介绍 1431307