Hierarchical Prototype Refinement with Progressive Inter-categorical Discrimination Maximization for Few-shot Learning

范畴变量 判别式 计算机科学 人工智能 模式识别(心理学) 公制(单位) 最大化 嵌入 编码 机器学习 数学 数学优化 运营管理 经济 生物化学 化学 基因
作者
Yuan Zhou,Yanrong Guo,Shijie Hao,Richang Hong
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2022.3170727
摘要

Metric-based few-shot learning categorizes unseen query instances by measuring their distance to the categories appearing in the given support set. To facilitate distance measurement, prototypes are used to approximate the representations of categories. However, we find prototypical representations are generally not discriminative enough to represent the discrepancy of inter-categorical distribution of queries, thereby limiting the classification accuracy. To overcome this issue, we propose a new Progressive Hierarchical-Refinement (PHR) method, which effectively refines the discrimination of prototypes by conducting the Progressive Discrimination Maximization strategy based on the hierarchical feature representations. Specifically, we first encode supports and queries into the representation space of spatial level, global level, and semantic level. Then, the refining coefficients are constructed by exploring the metric information contained in these hierarchical embedding spaces simultaneously. Under the guidance of the refining coefficients, the meta-refining loss progressively maximizes the discrimination degree of inter-categorical prototypical representations. In addition, the refining vectors are adopted to further enhance the representations of prototypes. In this way, the metric-based classification can be more accurate. Our PHR method shows the competitive performance on the miniImagenet, CIFAR-FS, FC100, and CUB datasets. Moreover, PHR presents good compatibility. It can be incorporated with other few-shot learning models, making them more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可土土完成签到,获得积分10
1秒前
隐形曼青应助Lz0330采纳,获得10
1秒前
好耶发布了新的文献求助10
2秒前
hyy关闭了hyy文献求助
4秒前
在水一方应助lucky采纳,获得10
6秒前
在水一方应助HY采纳,获得10
6秒前
精神小伙完成签到 ,获得积分10
8秒前
10秒前
sky完成签到,获得积分10
11秒前
工藤新一发布了新的文献求助10
14秒前
工藤新一完成签到,获得积分10
21秒前
科研通AI5应助阿杜阿杜采纳,获得30
21秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
宇心应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
23秒前
cdercder应助Li采纳,获得10
24秒前
25秒前
26秒前
柯伊达完成签到 ,获得积分10
28秒前
小星完成签到 ,获得积分10
28秒前
hunter发布了新的文献求助10
28秒前
HY发布了新的文献求助10
29秒前
阿典完成签到,获得积分10
32秒前
HY完成签到,获得积分10
34秒前
科研助手6应助TheMonster采纳,获得10
37秒前
匆匆完成签到,获得积分10
39秒前
JJ_fly完成签到,获得积分10
39秒前
41秒前
科研通AI5应助wyg117采纳,获得10
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800344
求助须知:如何正确求助?哪些是违规求助? 3345634
关于积分的说明 10326108
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680801
邀请新用户注册赠送积分活动 807242
科研通“疑难数据库(出版商)”最低求助积分说明 763557