电阻随机存取存储器
计算机科学
推论
杠杆(统计)
人工神经网络
高效能源利用
计算机工程
深度学习
能量(信号处理)
宏
记忆电阻器
算法
并行计算
人工智能
电子工程
数学
物理化学
工程类
电气工程
统计
化学
程序设计语言
电极
作者
Foroozan Karimzadeh,Jong‐Hyeok Yoon,Arijit Raychowdhury
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers
[Institute of Electrical and Electronics Engineers]
日期:2022-02-01
卷期号:69 (5): 1952-1961
被引量:14
标识
DOI:10.1109/tcsi.2022.3145687
摘要
The rising popularity of intelligent mobile devices and the computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a novel model compression scheme that allows inference to be carried out using bit-level sparsity, which can be efficiently implemented using in-memory computing macros. In this paper, we introduce a method called BitS-Net to leverage the benefits of bit-sparsity (where the number of zeros are more than number of ones in binary representation of weight/activation values) when applied to compute-in-memory (CIM) with resistive RAM (RRAM) to develop energy efficient DNN accelerators operating in the inference mode. We demonstrate that BitS-Net improves the energy efficiency by up to 5x for ResNet models on the ImageNet dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI