化学
电极
分析化学(期刊)
循环伏安法
剥离(纤维)
饱和(图论)
可逆氢电极
吸附
解吸
阳极溶出伏安法
铂金
电极电位
电化学
无机化学
参比电极
物理化学
催化作用
工程类
电气工程
组合数学
数学
生物化学
色谱法
作者
Ana López-Cudero,Ángel Cuesta,C. Gutiérrez
标识
DOI:10.1016/j.jelechem.2005.10.003
摘要
As in previous work with Pt(1 1 1) electrodes, we have combined CO-stripping cyclic voltammetry, CO charge–displacement and FT-IR spectroscopy measurements to determine changes in the coverage and structure of CO adlayers on Pt(1 0 0) electrodes in 0.1 M H2SO4 as a function of potential. In CO-free solutions the maximum coverage is θCO = 0.79, which can only be reached if the potential at which the electrode is held during CO adsorption (dosing potential, Ed) is more negative than 0.25 V vs. RHE. Although the highest CO coverage of Pt(1 0 0) electrodes in contact with CO-saturated solutions could not be determined, our FT-IR results clearly show that, as in the case of Pt(1 1 1) electrodes, removing CO from the solution results in a partial, reversible desorption of the CO adlayer, and, hence, that the CO adlayer on the Pt(1 0 0) electrode is in equilibrium with the CO-containing solution. The lowest CO coverage at which hydrogen adsorption on the Pt(1 0 0) electrode is completely blocked is θCO = 0.75, which corresponds to Ed = 0.40 V vs. RHE. The results reported here provide support to the hypothesis that the process at the pre-peak in CO-stripping voltammograms (and, hence, the oxidation at low overpotentials of bulk CO in CO-saturated solutions), corresponds to the oxidation of CO by reaction with oxygenated species nucleating at steps, the main CO-oxidation peak appearing when nucleation of oxygenated species at the terraces also occurs.
科研通智能强力驱动
Strongly Powered by AbleSci AI