A Guide for the Application of Statistics in Biomedical Studies Concerning Machine Learning and Artificial Intelligence

术语 结果(博弈论) 人工智能 透视图(图形) 机器学习 主题(文档) 光学(聚焦) 计算机科学 数据科学 数学 万维网 语言学 光学 物理 哲学 数理经济学
作者
Evan M. Polce,Kyle N. Kunze
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:39 (2): 151-158 被引量:13
标识
DOI:10.1016/j.arthro.2022.04.016
摘要

With the plethora of machine learning (ML) analyses published in the orthopaedic literature within the last 5 years, several attempts have been made to enhance our understanding of what exactly ML means and how it is used. At its most fundamental level, ML comprises a branch of artificial intelligence that uses algorithms to analyze and learn from patterns in data without explicit programming or human intervention. On the other hand, traditional statistics require a user to specifically choose variables of interest to create a model capable of predicting an outcome, the output of which (1) may be falsely influenced by the variables chosen to be included by the user and (2) does not allow for optimization of performance. Early publications have served as succinct editorials or reviews intended to ease audiences unfamiliar with ML into the complexities that accompany the subject. Most commonly, the focus of these studies concerns the terminology and concepts surrounding ML because it is important to understand the rationale behind performing such studies. Unfortunately, these publications only touch on the most basic aspects of ML and are too frequently repetitive. Indeed, the conclusion of these articles reiterate that the potential clinical utility of these algorithms remains tangential at best in their current form and caution against premature adoption without external validation. By doing so, our perspective and ability to draw our own conclusions from these studies have not advanced, and we are left concluding with each subsequent study that a new algorithm is published for an outcome of interest that cannot be used until further validation. What readers now need is to regress to embrace the principles of the scientific method that they have used to critically assess vast numbers of publications before this wave of newly applied statistical methodology-a guide to interpret results such that their own conclusions can be drawn. LEVEL OF EVIDENCE: Level V, expert opinion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ming Chen完成签到,获得积分10
刚刚
at完成签到 ,获得积分10
刚刚
刚刚
yanyimeng完成签到,获得积分10
刚刚
一一应助mag采纳,获得10
刚刚
1秒前
dorothy_meng完成签到,获得积分10
1秒前
Wxxxxx完成签到 ,获得积分10
1秒前
wanglan发布了新的文献求助10
2秒前
bct完成签到,获得积分10
2秒前
萧然完成签到,获得积分10
2秒前
Dream完成签到,获得积分10
2秒前
WCX发布了新的文献求助10
3秒前
勤奋的天亦完成签到,获得积分10
3秒前
3秒前
4秒前
单薄不惜完成签到,获得积分10
5秒前
DELI完成签到 ,获得积分10
6秒前
星星球大大怪美男完成签到,获得积分10
6秒前
青柠完成签到,获得积分10
7秒前
糖糖糖唐完成签到,获得积分10
7秒前
Randi发布了新的文献求助10
7秒前
嘉梦完成签到,获得积分10
7秒前
小羊完成签到,获得积分10
7秒前
yuan1226完成签到 ,获得积分10
8秒前
wyw123完成签到,获得积分10
8秒前
丁昆发布了新的文献求助10
9秒前
勤奋的凌翠完成签到 ,获得积分10
9秒前
八森木完成签到,获得积分10
9秒前
木子完成签到,获得积分10
10秒前
Allen完成签到,获得积分10
10秒前
10秒前
zbq来完成签到,获得积分10
11秒前
11秒前
小晋完成签到,获得积分0
13秒前
科研通AI5应助左凉采纳,获得10
13秒前
上好佳完成签到,获得积分10
13秒前
LEOhard发布了新的文献求助10
13秒前
六水居士完成签到,获得积分10
13秒前
88就是發完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
履带车辆的设计与计算 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486632
求助须知:如何正确求助?哪些是违规求助? 3941651
关于积分的说明 12222880
捐赠科研通 3598019
什么是DOI,文献DOI怎么找? 1978879
邀请新用户注册赠送积分活动 1015757
科研通“疑难数据库(出版商)”最低求助积分说明 908992