Identification and estimation of treatment and interference effects in observational studies on networks

协变量 观察研究 估计员 因果推理 倾向得分匹配 平均处理效果 计量经济学 推论 鉴定(生物学) 人口 统计 干扰(通信) 计算机科学 样品(材料) 数学 人工智能 医学 电信 频道(广播) 植物 化学 环境卫生 色谱法 生物
作者
Laura Forastiere,Edoardo M. Airoldi,Fabrizia Mealli
出处
期刊:Cornell University - arXiv 被引量:12
摘要

Causal inference on a population of units connected through a network often presents technical challenges, including how to account for interference. In the presence of local interference, for instance, potential outcomes of a unit depend on its treatment as well as on the treatments of other local units, such as its neighbors according to the network. In observational studies, a further complication is that the typical unconfoundedness assumption must be extended - say, to include the treatment of neighbors, and indi- vidual and neighborhood covariates - to guarantee identification and valid inference. Here, we propose new estimands that define treatment and interference effects. We then derive analytical expressions for the bias of a naive estimator that wrongly assumes away interference. The bias depends on the level of interference but also on the degree of association between individual and neighborhood treatments. We propose an extended unconfoundedness assumption that accounts for interference, and we develop new covariate-adjustment methods that lead to valid estimates of treatment and interference effects in observational studies on networks. Estimation is based on a generalized propensity score that balances individual and neighborhood covariates across units under different levels of individual treatment and of exposure to neighbors' treatment. We carry out simulations, calibrated using friendship networks and covariates in a nationally representative longitudinal study of adolescents in grades 7-12, in the United States, to explore finite-sample performance in different realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃凡桃完成签到 ,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
缓慢的衫完成签到,获得积分10
2秒前
传奇3应助小木子采纳,获得10
2秒前
王业勤发布了新的文献求助10
2秒前
xjcy应助苏乘风采纳,获得20
2秒前
LooYen发布了新的文献求助10
3秒前
lomo应助CT采纳,获得10
3秒前
桐桐应助保护野菠萝采纳,获得10
4秒前
jackycas发布了新的文献求助10
6秒前
刘海清完成签到,获得积分10
6秒前
Ava应助Lyncus采纳,获得10
8秒前
9秒前
小玛发布了新的文献求助10
9秒前
田様应助hhdegf采纳,获得10
11秒前
美丽的老头完成签到,获得积分10
11秒前
科研蚂蚁发布了新的文献求助10
12秒前
13秒前
星辰大海应助瓶里岑采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
风华正茂完成签到 ,获得积分10
14秒前
思源应助靓仔采纳,获得10
14秒前
15秒前
体贴不悔完成签到,获得积分0
17秒前
52251013106发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
紫枫完成签到,获得积分10
19秒前
所爱皆在完成签到 ,获得积分10
19秒前
19秒前
19秒前
yuhan发布了新的文献求助10
20秒前
20秒前
浮游应助好好读书采纳,获得10
20秒前
在水一方应助ChaiHaobo采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461264
求助须知:如何正确求助?哪些是违规求助? 4566267
关于积分的说明 14304421
捐赠科研通 4491980
什么是DOI,文献DOI怎么找? 2460619
邀请新用户注册赠送积分活动 1449907
关于科研通互助平台的介绍 1425593