奇异值分解
奇异值
数学
秩(图论)
基质(化学分析)
厄米矩阵
维数(图论)
嵌入
纯数学
奇异解
矩阵分解
应用数学
域代数上的
算法
数学分析
组合数学
特征向量
计算机科学
量子力学
物理
人工智能
材料科学
复合材料
作者
Patrick Rebentrost,Adrian Steffens,Iman Marvian,Seth Lloyd
出处
期刊:Physical review
[American Physical Society]
日期:2018-01-24
卷期号:97 (1)
被引量:136
标识
DOI:10.1103/physreva.97.012327
摘要
We present a method to exponentiate nonsparse indefinite low-rank matrices on a quantum computer. Given access to the elements of the matrix, our method allows one to determine the singular values and their associated singular vectors in time exponentially faster in the dimension of the matrix than known classical algorithms. The method extends to non-Hermitian and nonsquare matrices via matrix embedding. Moreover, our method preserves the phase relations between the singular spaces allowing for efficient algorithms that require operating on the entire singular-value decomposition of a matrix. As an example of such an algorithm, we discuss the Procrustes problem of finding a closest isometry to a given matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI