亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conversational Agents Improve Peer Learning through Building on Prior Knowledge.

合作学习 心理学 协作学习 认知学徒 多样性(控制论) 计算机科学 数学教育 教学方法 人工智能
作者
Στέργιος Τέγος,Stavros Demetriadis
出处
期刊:Educational Technology & Society [IEEE Computer Society]
卷期号:20 (1): 99-111 被引量:62
链接
摘要

Introduction Conversational agents In the field of technology-enhanced learning, pedagogical agents have been developed to serve a wide variety of instructional roles, such as expert, motivator, or mentor (Baylor & Kim, 2005). Conversational agents are typically regarded as a subgroup of pedagogical agents involving learners in natural language interactions (Kerly, Ellis, & Bull, 2009). Research has shown using conversational agents to engage learners in one-to-one (student-agent) tutorial dialogues to improve students' comprehension and foster students' engagement and motivation (Veletsianos & Russell, 2014). During the past decade, researchers also focused on developing conversational agents for collaborative learning support (e.g., Kumar & Rose, 2011). Despite the established cognitive and social benefits of computer-supported collaborative learning (CSCL), collaborative knowledge construction is not a given but depends on the quality of interactions taking place among learners (Dillenbourg & Tchounikine, 2007; Kreijns, Kirschner, & Jochems, 2002). Under this prism, well-targeted supportive interventions can be used as a method to increase the probability of constructive peer interactions occurring by means of stimulating cognitive processes, such as conflict resolution, mutual regulation or explicit explanation (Tchounikine, Rummel, & McLaren, 2010). Evidence suggests that conversational agents with social interaction capabilities can enhance learning and idea generation productivity by providing dynamic support for learners working together (Kumar & Rose, 2011; Kumar, Beuth, & Rose, 2011). Chaudhuri et al. (2008) reveal that agents guiding peers through prescribed lines of reasoning on specific topics can improve learning performance. A study by Walker, Rummel, and Koedinger (2011) indicates that an agent displaying reflective prompts in a scripted peer tutoring activity can help students produce conceptually richer statements. Academically talk Another research direction has recently emerged focusing on an agile form of conversational agent support, which emphasizes the key role of social interaction in student engagement and learning (e.g., Adamson, Dyke, Jang, & Rose, 2014). This approach draws on the academically talk (APT) framework, itself originating from a substantial body of work on useful classroom discussion practices and norms (Michaels, O'Connor, & Resnick, 2008). According to APT, a peer dialogue in class should be accountable to the learning community, accurate knowledge and rigorous thinking, irrespective of the subject area (Sohmer, Michaels, O'Connor, & Resnick, 2009). In view of the above, peers should paraphrase and expand on each other's ideas (i.e., being accountable to the learning community), support the validity of their claims making explicit references to a pool of knowledge accessible to the (i.e., being accountable to accurate knowledge), and logically connect their statements through rigorous argumentation (i.e., being accountable to rigorous thinking). Unlike other well-known discourse frameworks such as the IRE (Initiation, Response and Evaluation), the APT framework does not entail closing down a conversation after successfully eliciting a correct learner's response; instead, APT aims to promote and scaffold open-ended discussions where learners explicate their reasoning, compare their contributions with their partners' and construct logical arguments based on accurate evidence (Michaels, O'Connor, Hall, & Resnick 2010). Indeed, APT does not expect the teacher to maintain full control over learners' discussions, and prioritizes reasoning over correctness. The importance of the explicit articulation of reasoning is universally acknowledged by researchers, despite the different conceptualization of studies exploring the key features of a peer dialogue (for example, transactivity, group cognition, and productive agency) (Stahl & Rose, 2011). …

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
46秒前
wanci应助材料虎采纳,获得10
50秒前
1分钟前
材料虎发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得30
1分钟前
传奇3应助嘉禾瑶采纳,获得10
2分钟前
残月初升完成签到,获得积分10
2分钟前
2分钟前
2分钟前
嘉禾瑶发布了新的文献求助10
2分钟前
不停的喝水完成签到,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
3分钟前
dovejingling发布了新的文献求助10
3分钟前
彭于晏应助ceeray23采纳,获得20
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
jasmine发布了新的文献求助10
3分钟前
jasmine完成签到,获得积分10
3分钟前
我真的要好好学习完成签到 ,获得积分10
4分钟前
完美世界应助暗月采纳,获得10
4分钟前
小孙完成签到,获得积分10
4分钟前
科研通AI5应助淡定归尘采纳,获得10
4分钟前
Augustines完成签到,获得积分10
4分钟前
碗碗完成签到,获得积分10
4分钟前
4分钟前
liziqi发布了新的文献求助10
4分钟前
5分钟前
wxy发布了新的文献求助10
5分钟前
5分钟前
yukpangwoo完成签到 ,获得积分10
5分钟前
herococa应助科研通管家采纳,获得10
5分钟前
李健应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Medical English Clear and Simple(By Melodie Hull) 400
Oxford English for Careers: Nursing / Medicine • 🩺 出版社:Oxford University Press • 400
English in Medicine(作者:Eric H. Glendinning) 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927738
求助须知:如何正确求助?哪些是违规求助? 3472541
关于积分的说明 10972592
捐赠科研通 3202310
什么是DOI,文献DOI怎么找? 1769328
邀请新用户注册赠送积分活动 858017
科研通“疑难数据库(出版商)”最低求助积分说明 796259