数学
李普希茨连续性
单调函数
有界函数
单调多边形
劈形算符
类型(生物学)
平面(几何)
数学分析
零(语言学)
非线性系统
Dirichlet问题
边界(拓扑)
椭圆曲线
Dirichlet分布
Dirichlet边界条件
纯数学
边值问题
应用数学
几何学
物理
哲学
生物
生态学
欧米茄
语言学
量子力学
作者
Lucio Damascelli,Berardino Sciunzi
标识
DOI:10.57262/die/1356019303
摘要
We consider weak positive solutions of the equation $-\Delta_m u=f(u)$ in the half-plane with zero Dirichlet boundary conditions. Assuming that the nonlinearity $f$ is locally Lipschitz continuous and $f(s)>0$ for $s>0$, we prove that any solution is monotone. Some Liouville-type theorems follow in the case of Lane-Emden-Fowler-type equations. Assuming also that $|\nabla u|$ is globally bounded, our result implies that solutions are one dimensional, and the level sets are flat.
科研通智能强力驱动
Strongly Powered by AbleSci AI