DNA连接酶
硫酯
立体化学
化学
酶
活动站点
腺苷酸化
芳基
基质(水族馆)
辅因子
生物化学
生物合成
生物
有机化学
烷基
生态学
作者
Andrew M. Gulick,Xuefeng Lü,Debra Dunaway‐Mariano
出处
期刊:Biochemistry
[American Chemical Society]
日期:2004-06-18
卷期号:43 (27): 8670-8679
被引量:89
摘要
4-Chlorobenzoate:CoA ligase (CBAL) is a member of a family of adenylate-forming enzymes that catalyze two-step adenylation and thioester-forming reactions. In previous studies, we have provided structural evidence that members of this enzyme family (exemplified by acetyl-CoA synthetase) use a large domain rotation to catalyze the respective partial reactions [A. M. Gulick, V. J. Starai, A. R. Horswill, K. M. Homick, and J. C. Escalante-Semerena, (2003) Biochemistry 42, 2866-2873]. CBAL catalyzes the synthesis of 4-chlorobenzoyl-CoA, the first step in the 4-chlorobenzoate degredation pathway in PCB-degrading bacteria. We have solved the 2.0 A crystal structure of the CBAL enzyme from Alcaligenes sp. AL3007 using multiwavelength anomalous dispersion. The results demonstrate that in the absence of any ligands, or bound to the aryl substrate 4-chlorobenzoate, the enzyme adopts the conformation poised for catalysis of the adenylate-forming half-reaction. We hypothesize that coenzyme A binding is required for stabilization of the alternate conformation, which catalyzes the 4-CBA-CoA thioester-forming reaction. We have also determined the structure of the enzyme bound to the aryl substrate 4-chlorobenzoate. The aryl binding pocket is composed of Phe184, His207, Val208, Val209, Phe249, Ala280, Ile303, Gly305, Met310, and Asn311. The structure of the 4-chlorobenzoate binding site is discussed in the context of the binding sites of other family members to gain insight into substrate specificity and evolution of new function.
科研通智能强力驱动
Strongly Powered by AbleSci AI