Multimodal Mutual Attention-Based Sentiment Analysis Framework Adapted to Complicated Contexts

情绪分析 计算机科学 语义学(计算机科学) 人工智能 自然语言处理 机器学习 程序设计语言
作者
Lijun He,Ziqing Wang,Liejun Wang,Fan Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 7131-7143 被引量:11
标识
DOI:10.1109/tcsvt.2023.3276075
摘要

Sentiment analysis has broad application prospects in the field of social opinion mining. The openness and invisibility of the internet makes users' expression styles more diverse and thus results in the blooming of complicated contexts in which different unimodal data have inconsistent sentiment tendencies. However, most sentiment analysis algorithms only focus on designing multimodal fusion methods without preserving the individual semantics of each unimodal data. To avoid misunderstandings caused by ambiguity and sarcasm in complicated contexts, we propose a multimodal mutual attention-based sentiment analysis (MMSA) framework adapted to complicated contexts, which consists of three levels of subtasks to preserve the unimodal unique semantics and enhance the common semantics, to mine the association between unique semantics and common semantics and to balance decisions from unique and common semantics. In the framework, a multiperspective and hierarchical fusion (MHF) module is developed to fully fuse multimodal data, in which different modalities are mutually constrained and the fusion order is adjusted in the next step to enhance cross-modal complementarity. To balance the data, we calculate the loss by applying different weights to positive and negative samples. The experimental results on the CH-SIMS multimodal dataset show that our method outperforms existing multimodal sentiment analysis algorithms.The code of this work is available at https://gitee.com/viviziqing/mmsacode .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净思远完成签到,获得积分10
刚刚
可爱的函函应助chem is try采纳,获得10
1秒前
mazhihao完成签到 ,获得积分10
2秒前
结实问兰发布了新的文献求助50
2秒前
zhiyuyu完成签到,获得积分20
2秒前
甜甜乌冬面完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
酷波er应助amin采纳,获得10
5秒前
6秒前
英姑应助细心的语蓉采纳,获得10
7秒前
8秒前
马慧敏发布了新的文献求助10
10秒前
文静的灵松完成签到,获得积分10
12秒前
YifanWang应助willa采纳,获得20
12秒前
16秒前
16秒前
16秒前
充电宝应助独特靖巧采纳,获得10
17秒前
19秒前
Tim完成签到,获得积分10
19秒前
传奇3应助Lion采纳,获得10
20秒前
小吴小吴发布了新的文献求助10
20秒前
Ljc发布了新的文献求助10
21秒前
哈好好哈哈好完成签到,获得积分10
21秒前
amin发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
想上985完成签到 ,获得积分10
25秒前
26秒前
小冰棍发布了新的文献求助10
26秒前
领导范儿应助zerowey采纳,获得20
28秒前
zhiyuyu发布了新的文献求助10
29秒前
amin完成签到,获得积分20
29秒前
31秒前
32秒前
菜菜完成签到 ,获得积分10
32秒前
Lion完成签到,获得积分20
33秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902259
求助须知:如何正确求助?哪些是违规求助? 3447040
关于积分的说明 10846810
捐赠科研通 3172238
什么是DOI,文献DOI怎么找? 1752665
邀请新用户注册赠送积分活动 847386
科研通“疑难数据库(出版商)”最低求助积分说明 789904