已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Based prediction of Post-Treatment ambulatory blood pressure in patients with hypertension

医学 动态血压 血压 回廊的 平均差 舒张期 心脏病学 内科学 养生 置信区间
作者
Hyeonyong Hae,Soo‐Jin Kang,Tae Oh Kim,Pil Hyung Lee,Seung‐Whan Lee,Young‐Hak Kim,Cheol Whan Lee,Seong‐Wook Park
出处
期刊:Blood Pressure [Taylor & Francis]
卷期号:32 (1) 被引量:6
标识
DOI:10.1080/08037051.2023.2209674
摘要

Purpose. Pre-treatment prediction of individual blood pressure (BP) response to anti-hypertensive medication is important to determine the specific regimen for promptly and safely achieving a target BP. This study aimed to develop supervised machine learning (ML) models for predicting patient-specific treatment effects using 24-hour ambulatory BP monitoring (ABPM) data.Materials and Methods. A total of 1,129 patients who had both baseline and follow-up ABPM data were randomly assigned into training, validation and test sets in a 3:1:1 ratio. Utilising the features including clinical and laboratory findings, initial ABPM data, and anti-hypertensive medication at baseline and at follow-up, ML models were developed to predict post-treatment individual BP response. Each case was labelled by the mean 24-hour and daytime BPs derived from the follow-up ABPM.Results. At baseline, 616 (55%) patients had been treated using mono or combination therapy with 45 anti-hypertensive drugs and the remaining 513 (45%) patients had been untreated (drug-naïve). By using CatBoost, the difference between predicted vs. measured mean 24-hour systolic BP at follow-up was 8.4 ± 7.0 mm Hg (% difference of 6.6% ± 5.7%). The difference between predicted vs. measured mean 24-hour diastolic BP was 5.3 ± 4.3 mm Hg (% difference of 6.8% ± 5.5%). There were significant correlations between the CatBoost-predicted vs. the ABPM-measured changes in the mean 24-hour Systolic (r = 0.74) and diastolic (r = 0.68) BPs from baseline to follow-up. Even in the patients with renal insufficiency or diabetes, the correlations between CatBoost-predicted vs. ABPM-measured BP changes were significant.Conclusion. ML algorithms accurately predict the post-treatment ambulatory BP levels, which may assist clinicians in personalising anti-hypertensive treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Mason采纳,获得10
2秒前
害羞傲薇发布了新的文献求助10
3秒前
3秒前
陌路完成签到 ,获得积分10
8秒前
10秒前
12秒前
爱打工的帕鲁完成签到 ,获得积分10
12秒前
chengmin发布了新的文献求助10
15秒前
hixx发布了新的文献求助10
15秒前
潇潇雨歇发布了新的文献求助10
17秒前
Vintage发布了新的文献求助10
19秒前
19秒前
在水一方应助skhhh采纳,获得10
20秒前
LINF完成签到,获得积分10
22秒前
Xiaoxiao应助chengmin采纳,获得10
22秒前
23秒前
鱼儿发布了新的文献求助10
24秒前
26秒前
wushhsh1发布了新的文献求助10
27秒前
善学以致用应助害羞傲薇采纳,获得10
27秒前
29秒前
31秒前
Mason发布了新的文献求助10
33秒前
隐形曼青应助fduqyy采纳,获得10
39秒前
39秒前
hh发布了新的文献求助10
39秒前
小菲完成签到 ,获得积分10
41秒前
糊涂的马里奥完成签到 ,获得积分10
42秒前
udbjn123发布了新的文献求助10
43秒前
害羞傲薇完成签到,获得积分10
47秒前
李爱国应助fl采纳,获得10
50秒前
田様应助Mason采纳,获得10
53秒前
lyf_cq完成签到,获得积分10
53秒前
56秒前
hh完成签到,获得积分10
57秒前
57秒前
Bruce发布了新的文献求助10
1分钟前
fl发布了新的文献求助10
1分钟前
ZHH发布了新的文献求助10
1分钟前
嘟嘟嘟嘟完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780696
求助须知:如何正确求助?哪些是违规求助? 3326187
关于积分的说明 10226179
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758701