A novel temporal classification prototype network for few-shot bearing fault detection

计算机科学 分类器(UML) 人工智能 卷积神经网络 模式识别(心理学) 数据挖掘 故障检测与隔离 特征向量 领域知识 机器学习 执行机构
作者
Yanfei Liu,Ziang Du,Hao Zheng,Qian Zhang,Cheng Chen,Nana Wu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 14321-14321
标识
DOI:10.1038/s41598-025-98963-4
摘要

Abstract In the process of industrial production, bearing fault detection has always been a hot issudza20000528@163.comsolved. At present, the problem of less fault data samples in the field of fault detection has caused great trouble to the research of deep learning. In the application of industrial fault detection, which is difficult to obtain massive data, it is easy to lead to the lack of fitting of neural network training and many generalization problems. To solve the above problems, this paper proposes an improved and more efficient method of few-shot supervised learning, which is called the Temporal Classification Prototype Network (TCPN). This model is designed to maintain both training efficacy and generalization capabilities under conditions of data scarcity. Initially, Fourier transform is employed to accentuate the frequency domain characteristics of the fault section in the bearing signal before it is input into the model, thereby enabling the subsequent model to concentrate on distinguishing between normal and fault signals. Subsequently, discrete data sample points are transformed into points within the feature space via our Enhanced Temporal Convolutional Network(ETCN). In our investigation, we utilize the features of the support set as anchors within the feature space and employ similarity measures as the basis for classification, thus developing a more effective comparative learning classifier known as the ContractSim Classifier (CSC). Within the CSC, the model learns the data features of the query set, which are then back-propagated to refine our model. The proposed TCPN model has been evaluated across four standard bearing datasets, corroborating its few-shot learning proficiency through k-shot experiments. In comparative model experiments, our TCPN outperforms baseline models, while the ablation study confirms the rationality and robustness of our module integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CJ发布了新的文献求助10
1秒前
安青兰发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助hutian采纳,获得10
1秒前
2秒前
2秒前
马里奥好难完成签到 ,获得积分10
3秒前
psy关闭了psy文献求助
3秒前
aa完成签到,获得积分10
3秒前
樊孟完成签到,获得积分10
4秒前
Komorebi发布了新的文献求助10
4秒前
lin229完成签到,获得积分10
4秒前
平平完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
隐形曼青应助Dylan采纳,获得10
5秒前
忧郁冰真完成签到,获得积分10
5秒前
6秒前
Orange应助12采纳,获得10
6秒前
6秒前
quzhenzxxx完成签到 ,获得积分10
6秒前
Zoraaawen发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
云帆发布了新的文献求助10
9秒前
孤独聪健发布了新的文献求助10
9秒前
orixero应助SL毕业采纳,获得10
10秒前
10秒前
王大炮发布了新的文献求助10
10秒前
ttkj完成签到,获得积分20
10秒前
10秒前
11秒前
脑洞疼应助小小采纳,获得10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5446527
求助须知:如何正确求助?哪些是违规求助? 4555528
关于积分的说明 14252304
捐赠科研通 4477993
什么是DOI,文献DOI怎么找? 2453459
邀请新用户注册赠送积分活动 1444257
关于科研通互助平台的介绍 1420353