Improved Pine Wood Nematode Disease Diagnosis System Based on Deep Learning

松材线虫 枯萎病 生物 人工智能 深度学习 计算机科学 鉴定(生物学) 模式识别(心理学) 机器学习 线虫 植物 生态学
作者
Jialei Xiao,Jin Wu,Dongdong Liu,Xiawei Li,Junlong Liu,Xunwen Su,Yonglin Wang
出处
期刊:Plant Disease [American Phytopathological Society]
标识
DOI:10.1094/pdis-06-24-1221-re
摘要

Pine wilt disease caused by the pine wood nematode, Bursaphelenchus xylophilus, has profound implications for global forestry ecology. Conventional PCR methods need long operating time and are complicated to perform. The need for rapid and effective detection methodologies to curtail its dissemination and reduce pine felling has become more apparent. This study initially proposed the use of fluorescence recognition for the detection of pine wood nematode disease, accompanied by the development of a dedicated fluorescence detection system based on deep learning. This system possesses the capability to perform excitation, detection, as well as data analysis and transmission of test samples. In exploring fluorescence recognition methodologies, the efficacy of five conventional machine learning algorithms was juxtaposed with that of You Only Look Once version 5 and You Only Look Once version 10, both in the pre- and post-image processing stages. Moreover, enhancements were introduced to the You Only Look Once version 5 model. The network’s aptitude for discerning features across varied scales and resolutions was bolstered through the integration of Res2Net. Meanwhile, a SimAM attention mechanism was incorporated into the backbone network, and the original PANet structure was replaced by the Bi-FPN within the Head network to amplify feature fusion capabilities. The enhanced YOLOv5 model demonstrates significant improvements, particularly in the recognition of large-size images, achieving an accuracy improvement of 39.98%. The research presents a novel detection system for pine nematode detection, capable of detecting samples with DNA concentrations as low as 1 fg/μl within 20 min. This system integrates detection instruments, laptops, cloud computing, and smartphones, holding tremendous potential for field application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助犹豫的幻灵采纳,获得10
1秒前
孔雪发布了新的文献求助10
1秒前
简单完成签到 ,获得积分10
1秒前
土豆完成签到,获得积分10
2秒前
追寻绮烟完成签到,获得积分10
3秒前
Tony完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
家家发布了新的文献求助10
7秒前
陈慧关注了科研通微信公众号
7秒前
中中完成签到,获得积分10
7秒前
所所应助油炸小麻花采纳,获得10
9秒前
10秒前
巷陌巾发布了新的文献求助10
11秒前
12秒前
乌托邦完成签到,获得积分10
12秒前
12秒前
zyw0532完成签到,获得积分10
15秒前
jack应助格非采纳,获得10
15秒前
15秒前
杨stream关注了科研通微信公众号
17秒前
123完成签到,获得积分10
17秒前
17秒前
水溶c100发布了新的文献求助10
17秒前
亓熙发布了新的文献求助10
18秒前
伶俐的觅海完成签到,获得积分10
20秒前
研友_zndKVL完成签到,获得积分10
21秒前
小黎快看完成签到,获得积分10
21秒前
21秒前
Condor发布了新的文献求助10
22秒前
巷陌巾完成签到,获得积分10
22秒前
26秒前
Kate发布了新的文献求助20
26秒前
顾矜应助111采纳,获得10
27秒前
zcj完成签到,获得积分10
28秒前
刘浩关注了科研通微信公众号
28秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949712
求助须知:如何正确求助?哪些是违规求助? 3494978
关于积分的说明 11074914
捐赠科研通 3225567
什么是DOI,文献DOI怎么找? 1783113
邀请新用户注册赠送积分活动 867400
科研通“疑难数据库(出版商)”最低求助积分说明 800796