亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

New Perspectives on Lung Cancer Screening and Artificial Intelligence

肺癌筛查 肺癌 假阳性悖论 医学 生物标志物 癌症 医学诊断 液体活检 阶段(地层学) 活检 放射科 人工智能 机器学习 肿瘤科 内科学 计算机科学 生物 古生物学 生物化学 化学
作者
Leonardo Duranti,Luca Tavecchio,Luigi Rolli,Piergiorgio Solli
出处
期刊:Life [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 498-498
标识
DOI:10.3390/life15030498
摘要

Lung cancer is the leading cause of cancer-related death worldwide, with 1.8 million deaths annually. Early detection is vital for improving patient outcomes; however, survival rates remain low due to late-stage diagnoses. Accumulating data supports the idea that screening methods are useful for improving early diagnosis in high-risk patients. However, several barriers limit the application of lung cancer screening in real-world settings. The widespread diffusion of artificial intelligence (AI), radiomics, and machine learning has dramatically changed the current diagnostic landscape. This review explores the potential of AI and biomarker-driven methods, particularly liquid biopsy, in enhancing early lung cancer detection. We report the findings of major randomized controlled trials, cohort studies, and research on AI algorithms that use multi-modal imaging (e.g., CT and PET scans) and liquid biopsy to identify early molecular alterations. AI algorithms enhance diagnostic accuracy by automating image analysis and reducing inter-reader variability. Biomarker-driven methods identify molecular alterations in patients before imaging signs of cancer are evident. Both AI and liquid biopsy show the potential to improve sensitivity and specificity, enabling the detection of early-stage cancers that traditional methods, like low-dose CT (LDCT) scans, might miss. Integrating AI and biomarker-driven methods offers significant promise for transforming lung cancer screening. These technologies could enable earlier, more accurate detection, ultimately improving survival outcomes. AI-driven lung cancer screening can achieve over 90% sensitivity, compared to 70–80% with traditional methods, and can reduce false positives by up to 30%. AI also boosts specificity to 85–90%, with faster processing times (a few minutes vs. 30–60 min for radiologists). However, challenges remain in standardizing these approaches and integrating them into clinical practice. Ongoing research is essential to fully realize their clinical benefits and enhance timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li应助熊出没之光头强666采纳,获得10
8秒前
37秒前
发个15分的完成签到 ,获得积分10
49秒前
Li应助熊出没之光头强666采纳,获得10
49秒前
貔貅完成签到 ,获得积分10
51秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Li应助熊出没之光头强666采纳,获得10
1分钟前
huangzsdy完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Li应助熊出没之光头强666采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
4分钟前
PAIDAXXXX完成签到,获得积分10
4分钟前
不安的松完成签到 ,获得积分10
4分钟前
mmyhn发布了新的文献求助10
4分钟前
木鸽子发布了新的文献求助20
4分钟前
mmyhn发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
zzx发布了新的文献求助10
5分钟前
科研狂人发布了新的文献求助10
5分钟前
科研狂人完成签到,获得积分10
5分钟前
传奇3应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
高大的小土豆完成签到,获得积分20
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
SciGPT应助城。采纳,获得10
8分钟前
8分钟前
城。发布了新的文献求助10
8分钟前
机灵雨完成签到 ,获得积分10
8分钟前
ZaZa完成签到,获得积分10
9分钟前
城。完成签到,获得积分20
9分钟前
610完成签到 ,获得积分10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779163
求助须知:如何正确求助?哪些是违规求助? 3324762
关于积分的说明 10219859
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503