3D lymphoma segmentation on PET/CT images via multi‐scale information fusion with cross‐attention

基本事实 人工智能 豪斯多夫距离 分割 计算机科学 弥漫性大B细胞淋巴瘤 正电子发射断层摄影术 模式识别(心理学) 编码器 特征(语言学) 医学影像学 图像分割 百分位 核医学 数学 医学 淋巴瘤 哲学 操作系统 统计 免疫学 语言学
作者
H. K. Huang,Liheng Qiu,Shenmiao Yang,Longxi Li,Jiaofen Nan,Yanting Li,Chuang Han,Fubao Zhu,Zhao Chen,Weihua Zhou
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17763
摘要

Accurate segmentation of diffuse large B-cell lymphoma (DLBCL) lesions is challenging due to their complex patterns in medical imaging. Traditional methods often struggle to delineate these lesions accurately. This study aims to develop a precise segmentation method for DLBCL using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and computed tomography (CT) images. We propose a 3D segmentation method based on an encoder-decoder architecture. The encoder incorporates a dual-branch design based on the shifted window transformer to extract features from both PET and CT modalities. To enhance feature integration, we introduce a multi-scale information fusion (MSIF) module that performs multi-scale feature fusion using cross-attention mechanisms with a shifted window framework. A gated neural network within the MSIF module dynamically adjusts feature weights to balance the contributions from each modality. The model is optimized using the dice similarity coefficient (DSC) loss function, minimizing discrepancies between the model prediction and ground truth. Additionally, we computed the total metabolic tumor volume (TMTV) and performed statistical analyses on the results. The model was trained and validated on a private dataset of 165 DLBCL patients and a publicly available dataset (autoPET) containing 145 PET/CT scans of lymphoma patients. Both datasets were analyzed using five-fold cross-validation. On the private dataset, our model achieved a DSC of 0.7512, sensitivity of 0.7548, precision of 0.7611, an average surface distance (ASD) of 3.61 mm, and a Hausdorff distance at the 95th percentile (HD95) of 15.25 mm. On the autoPET dataset, the model achieved a DSC of 0.7441, sensitivity of 0.7573, precision of 0.7427, ASD of 5.83 mm, and HD95 of 21.27 mm, outperforming state-of-the-art methods (p < 0.05, t-test). For TMTV quantification, Pearson correlation coefficients of 0.91 (private dataset) and 0.86 (autoPET) were observed, with R2 values of 0.89 and 0.75, respectively. Extensive ablation studies demonstrated the MSIF module's contribution to enhanced segmentation accuracy. This study presents an effective automatic segmentation method for DLBCL that leverages the complementary strengths of PET and CT imaging. The method demonstrates robust performance on both private and publicly available datasets, ensuring its reliability and generalizability. Our method provides clinicians with more precise tumor delineation, which can improve the accuracy of diagnostic interpretations and assist in treatment planning for DLBCL patients. The code for the proposed method is available at https://github.com/chenzhao2023/lymphoma_seg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
4秒前
5秒前
Rener完成签到,获得积分20
5秒前
strawberry发布了新的文献求助30
5秒前
LUK_发布了新的文献求助10
5秒前
9秒前
叶琳发布了新的文献求助10
9秒前
邓代容完成签到 ,获得积分10
11秒前
TopBanana完成签到 ,获得积分10
12秒前
12秒前
77完成签到 ,获得积分10
14秒前
15秒前
葵景发布了新的文献求助10
16秒前
悦耳的惜海完成签到,获得积分10
17秒前
小郭完成签到 ,获得积分10
17秒前
1793275356发布了新的文献求助10
19秒前
爱你的心完成签到 ,获得积分10
19秒前
白子双完成签到 ,获得积分10
19秒前
20秒前
20秒前
25秒前
26秒前
山语发布了新的文献求助10
26秒前
布布爱吃炸鸡完成签到,获得积分10
29秒前
小马甲应助垃圾的摆设采纳,获得10
29秒前
Banana完成签到,获得积分20
29秒前
彩色的无声完成签到,获得积分20
30秒前
EvaHo完成签到,获得积分10
31秒前
天天快乐应助1793275356采纳,获得10
31秒前
小马甲应助山语采纳,获得10
34秒前
Boring完成签到,获得积分10
37秒前
ding应助科研通管家采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得10
37秒前
斯文败类应助科研通管家采纳,获得10
38秒前
隐形曼青应助科研通管家采纳,获得10
38秒前
Ava应助科研通管家采纳,获得10
38秒前
丘比特应助科研通管家采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778938
求助须知:如何正确求助?哪些是违规求助? 3324564
关于积分的说明 10218717
捐赠科研通 3039563
什么是DOI,文献DOI怎么找? 1668284
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440