Electronic Modulation of Cu Catalytic Interfaces by Functionalized Ionic Liquids for Enhanced CO2 Reduction

离子液体 催化作用 调制(音乐) 还原(数学) 离子键合 化学工程 材料科学 化学 纳米技术 离子 有机化学 物理 几何学 声学 数学 工程类
作者
Chuanhui Wang,Wei Zhou,Jiamin Ma,Zhi Wang,Congyun Zhang
出处
期刊:Molecules [MDPI AG]
卷期号:30 (11): 2352-2352 被引量:1
标识
DOI:10.3390/molecules30112352
摘要

The electrocatalytic CO2 reduction reaction (CO2RR) into value-added multi-carbon C2+ products holds significant promise for sustainable chemical synthesis and carbon-neutral energy cycles. Among the various strategies developed to enhance CO2RR, the use of ionic liquids (ILs) has emerged as a powerful approach for modulating the local microenvironment and electronic structure of Cu-based metal catalysts. In this study, to unravel the molecular-level mechanisms underlying these enhancements, density functional theory calculations (DFTs) were employed to systematically explore how ILs with different terminal groups modulate the electronic reconstruction of the Cu surface, further affecting the *CO-*CO coupling and product selectivity. Electronic structure analyses reveal that ILs bearing polar moieties (-SH, -COOH) can synergistically enhance the interfacial electron accumulation and induce an upshift of the Cu d-band center, thereby strengthening *CO adsorption. In contrast, nonpolar IL (CH3) exhibits negligible effects, underscoring the pivotal role of ILs' polarity in catalyst surface-state engineering. The free energy diagrams and transition state analyses reveal that ILs with polar groups significantly lower both the reaction-free energy and activation barrier associated with the *CO-*CO coupling step. This energetic favorability selectively inhibits the C1 product pathways and hydrogen evolution reaction (HER), further improving the selectivity of C2 products. These theoretical insights not only unveil the mechanistic origins of IL-induced performance enhancement but also offer predictive guidance for the rational design of advanced IL-catalyst systems for efficient CO2 electroreduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大辉应助kk采纳,获得10
1秒前
这不得行发布了新的文献求助10
1秒前
乐乐应助阳光的芯采纳,获得10
2秒前
chtqt发布了新的文献求助10
2秒前
尘扬发布了新的文献求助10
3秒前
阳光彩虹小白马完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
浮游应助舒克采纳,获得10
5秒前
Su2side发布了新的文献求助10
6秒前
leiiiiiiii发布了新的文献求助10
6秒前
ChenYX发布了新的文献求助10
6秒前
砼砼完成签到,获得积分10
7秒前
科目三应助charint采纳,获得10
7秒前
8秒前
8秒前
momo完成签到,获得积分10
9秒前
ok应助科研通管家采纳,获得10
9秒前
liuguanfeng发布了新的文献求助10
9秒前
gengen应助科研通管家采纳,获得10
9秒前
gengen应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
10秒前
念烟应助科研通管家采纳,获得10
10秒前
power完成签到,获得积分10
10秒前
ok应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
Akim应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
铃铛应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
gengen应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
Ther应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484198
求助须知:如何正确求助?哪些是违规求助? 4584516
关于积分的说明 14398451
捐赠科研通 4514616
什么是DOI,文献DOI怎么找? 2474059
邀请新用户注册赠送积分活动 1459987
关于科研通互助平台的介绍 1433390