Artificial intelligence-assisted approach to assessing bowel wall thickness in pediatric inflammatory bowel disease using intestinal ultrasound images

医学 炎症性肠病 超声波 炎症性肠病 胃肠病学 结肠镜检查 放射科 内科学 疾病 结直肠癌 癌症
作者
Logiraj Kumaralingam,K. May,Vương Đặng Quốc,Javaneh Alavi,H Huynh,Lawrence H. Le
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
标识
DOI:10.1093/ecco-jcc/jjaf037
摘要

Intestinal ultrasound (IUS) potentially spares patients from repeated endoscopies under sedation and eliminates the need for alternative imaging modalities like magnetic resonance enterography and computed tomography enterography scans. However, interpreting IUS images is challenging for physicians due to the time-intensive process of identifying markers indicative of inflammatory bowel disease (IBD). This study aims to fully automate the analysis of pediatric IBD to distinguishing between abnormal and normal cases. We used dataset of 260 pediatric patients, consisting of 4,565 IUS images with 1,478 abnormal and 3,087 normal cases. Meticulous annotation of the region between the lumen/mucosa and the muscularis/serosa interfaces in a subset of 612 images were performed. An artificial intelligent (AI) algorithm was trained to delineate the region between these interfaces. The boundaries of these regions were extracted, and the average bowel wall thickness (BWT) was calculated and analysed using cut-off values ranging between 1.5 mm and 3 mm. This study showed promising segmentation performance in accurately identifying the lumen/mucosa and muscularis/serosa interfaces. In a separate test set of 3,953 images, the classification performance at the 2 mm BWT cut-off showed the highest sensitivity of 90.29% and a specificity of 93.70%. The AI method showed strong agreement, with an inter-class correlation of 0.942 (95% CI: 0.938-0.946), compared to manual clinical measurements. This study demonstrates an AI approach to automate the analysis of pediatric IBD IUS images, providing a reliable tool for early detection, precise characterization, and monitoring of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芃123完成签到 ,获得积分10
1秒前
1秒前
无奈醉柳完成签到 ,获得积分10
1秒前
Li发布了新的文献求助10
2秒前
lyt010307完成签到,获得积分10
3秒前
石破天惊完成签到,获得积分10
5秒前
minmin完成签到,获得积分10
5秒前
qzp完成签到 ,获得积分10
5秒前
可爱邓邓完成签到 ,获得积分10
6秒前
6秒前
Jaylou完成签到,获得积分10
10秒前
10秒前
豆浆油条完成签到 ,获得积分10
11秒前
12秒前
研友_8WO978发布了新的文献求助10
15秒前
xiaofeiyan完成签到 ,获得积分10
16秒前
黄雪峰发布了新的文献求助10
17秒前
孙刚完成签到 ,获得积分10
18秒前
点凌蝶完成签到,获得积分10
20秒前
Freya完成签到 ,获得积分10
20秒前
威武鞅完成签到,获得积分10
20秒前
1111完成签到 ,获得积分10
20秒前
张一完成签到,获得积分10
21秒前
xiaoming完成签到 ,获得积分10
23秒前
Joy完成签到,获得积分10
23秒前
旅梦完成签到 ,获得积分10
24秒前
25秒前
violetlishu完成签到 ,获得积分10
27秒前
ricown完成签到,获得积分10
27秒前
29秒前
烟花应助研友_8WO978采纳,获得10
30秒前
whisper完成签到 ,获得积分10
30秒前
汉堡包应助科研通管家采纳,获得10
31秒前
老迟到的羊完成签到 ,获得积分10
33秒前
小事完成签到 ,获得积分10
41秒前
勤奋凡之完成签到 ,获得积分10
41秒前
star完成签到,获得积分10
42秒前
君看一叶舟完成签到 ,获得积分10
43秒前
Zz完成签到 ,获得积分10
44秒前
hhllhh完成签到,获得积分10
53秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784858
求助须知:如何正确求助?哪些是违规求助? 3330118
关于积分的说明 10244374
捐赠科研通 3045503
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557