亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Lymph Node Metastasis in Non–Small Cell Lung Carcinoma Using Primary Tumor Somatic Mutation Data

接收机工作特性 医学 肿瘤科 逻辑回归 特征选择 比例危险模型 朴素贝叶斯分类器 肺癌 放射基因组学 人工智能 内科学 机器学习 计算机科学 支持向量机 无线电技术
作者
Victor Lee,Nicholas Moore,Joshua Doyle,Daniel Hicks,Patrick Oh,Shari Bodofsky,Sajid Hossain,Abhijit A. Patel,Sanjay Aneja,Robert Homer,Henry S. Park
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:9 (9): e2400303-e2400303
标识
DOI:10.1200/cci-24-00303
摘要

PURPOSE Lymph node metastasis (LNM) significantly affects prognosis and treatment strategies in non–small cell lung cancer (NSCLC). Current diagnostic methods, including imaging and histopathology, have limited sensitivity and specificity. This study aims to develop and evaluate machine learning (ML) models that predict LNM in NSCLC using single-nucleotide polymorphism (SNP) data from The Cancer Genome Atlas. METHODS A cohort of 542 patients with NSCLC with comprehensive SNP data were analyzed. After preprocessing, feature selection was performed using chi-square tests to identify SNPs significantly associated with LNM. Twelve ML models, including Logistic Regression, Naive Bayes, and Support Vector Machines, were trained and evaluated using bootstrapped data sets. Model performance was assessed using metrics such as accuracy, area under the receiver operating characteristic curve (AUC), and F1 score. Shapley additive explanations values were used for feature interpretability, and survival analysis was conducted to assess clinical outcomes. RESULTS Naive Bayes and Logistic Regression models achieved the highest predictive performance, with median AUCs of 0.93 and 0.91, respectively. Key SNPs, including mutations in TANC2 , KCNT2 , and CENPF , were consistently identified as predictive features. Survival analysis demonstrated significant differences in outcomes on the basis of model-predicted LNM status (log-rank P = .0268). Feature selection improved model accuracy and robustness, highlighting the biological relevance of selected SNPs. CONCLUSION ML models leveraging primary tumor SNP data can enhance LNM prediction in NSCLC, outperforming traditional diagnostic methods. These findings underscore the potential of integrating genomics and ML to develop noninvasive biomarkers, enabling precise risk stratification and personalized treatment strategies in oncology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihao完成签到 ,获得积分10
4秒前
7秒前
迷你的夜天完成签到 ,获得积分10
10秒前
null完成签到,获得积分0
14秒前
23秒前
李健的小迷弟应助黎日新采纳,获得10
24秒前
25秒前
默默善愁发布了新的文献求助10
28秒前
33秒前
34秒前
orangel发布了新的文献求助10
41秒前
pinellode发布了新的文献求助10
41秒前
NexusExplorer应助默默善愁采纳,获得30
42秒前
44秒前
小马甲应助orangel采纳,获得10
46秒前
48秒前
黎日新发布了新的文献求助10
55秒前
pinellode完成签到,获得积分10
57秒前
59秒前
古铜完成签到 ,获得积分10
1分钟前
1分钟前
云岫完成签到 ,获得积分10
1分钟前
1分钟前
陶醉从云完成签到,获得积分10
1分钟前
NexusExplorer应助科研狗采纳,获得10
2分钟前
朴素绿蝶完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Hello应助Hoolyshit采纳,获得10
2分钟前
科研狗发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Foch发布了新的文献求助10
2分钟前
2分钟前
默默善愁发布了新的文献求助30
2分钟前
Foch完成签到,获得积分10
2分钟前
2分钟前
3分钟前
伊萨卡发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413213
求助须知:如何正确求助?哪些是违规求助? 4530372
关于积分的说明 14122866
捐赠科研通 4445331
什么是DOI,文献DOI怎么找? 2439187
邀请新用户注册赠送积分活动 1431234
关于科研通互助平台的介绍 1408672