Improved Food Recognition Using a Refined ResNet50 Architecture with Improved Fully Connected Layers

建筑 计算机科学 人工智能 模式识别(心理学) 艺术 视觉艺术
作者
Pouya Bohlol,Soleiman Hosseinpour,Mahmoud Soltani Firouz
出处
期刊:Current research in food science [Elsevier BV]
卷期号:10: 101005-101005
标识
DOI:10.1016/j.crfs.2025.101005
摘要

Food consumption has significant effects on human health, particularly in relation to quality control, quantity, freshness, and color. This study focuses on identifying food across 16 categories, divided into breakfast, lunch, and dinner, to evaluate its impact on the human body, specifically in hospital and restaurant settings. The recognition system was used a machine vision system and deep learning algorithms to record food consumption videos, extracting images. After preprocessing, a raw dataset was bulit that consisted of 12,000 images, expanded to 66,000 images through data augmentation. Five deep learning algorithms were used for recognizing food and consumed food. ResNet50 was the best algorithm in comparison to other deep learning architectures. The effect of Hyper-parameters such as data augmentation, batch size, image size, and learning rate on performance of Resnet50 were analyzed. Transfer learning method led us to develop three versions: standard ResNet50, fine-tuned ResNet50, and optimized ResNet50 with a customized fully connected layer. ResNet50 with a specific dense layer was the best development version of ResNet50. This model with Adam optimizer, 10-3 initial learning rate, batch size 4, and image size 340 × 640 could recognize various foods with 97.25% accuracy and 0.2 loss. Response time and training time of this architecture compared to other algorithms were confidential; the training process and response time were 5.30 h and 1.2 s. ResNet50 with a specific fully connected layer powerfully could complete tasks with high accuracy and the least time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANG发布了新的文献求助10
刚刚
烟酒牲完成签到,获得积分10
刚刚
1秒前
1秒前
多多发布了新的文献求助10
1秒前
Johnpick应助sun采纳,获得10
1秒前
fancy发布了新的文献求助10
2秒前
2秒前
旧梦完成签到 ,获得积分10
3秒前
3秒前
4秒前
gaochi完成签到,获得积分10
4秒前
白白完成签到,获得积分10
5秒前
柳寄柔完成签到,获得积分10
5秒前
田様应助野花采纳,获得10
5秒前
Yy完成签到,获得积分10
5秒前
自然醒完成签到,获得积分10
5秒前
小小波发布了新的文献求助30
6秒前
小v1212发布了新的文献求助10
7秒前
7秒前
自由面包发布了新的文献求助10
8秒前
9秒前
大壮完成签到,获得积分10
9秒前
Yy发布了新的文献求助30
10秒前
tao发布了新的文献求助10
11秒前
852应助君子不救采纳,获得10
11秒前
12秒前
lilala完成签到,获得积分10
12秒前
昏睡的眼神完成签到 ,获得积分10
13秒前
不改名字发布了新的文献求助10
13秒前
汉堡包应助试验顺利采纳,获得10
14秒前
小蘑菇应助周俊俊采纳,获得10
14秒前
英姑应助尊敬乐蕊采纳,获得10
14秒前
Akim应助大雯仔采纳,获得10
14秒前
愉快南琴完成签到,获得积分10
15秒前
15秒前
Sh1zuru完成签到,获得积分10
15秒前
Bressanone发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896529
求助须知:如何正确求助?哪些是违规求助? 3440472
关于积分的说明 10817424
捐赠科研通 3165471
什么是DOI,文献DOI怎么找? 1748749
邀请新用户注册赠送积分活动 844951
科研通“疑难数据库(出版商)”最低求助积分说明 788357