Recent strides in artificial intelligence for predicting thermoelectric properties and materials discovery

人工智能 计算机科学 材料科学 机器学习 数据科学
作者
Nikhil K. Barua,Sangjoon Lee,Anton O. Oliynyk,Holger Kleinke
出处
期刊:JPhys energy [IOP Publishing]
标识
DOI:10.1088/2515-7655/adba87
摘要

Abstract Machine learning models as part of artificial intelligence have enjoyed a recent surge in answering a long-standing challenge in thermoelectric materials research. That challenge is to produce stable, and highly efficient, thermoelectric materials for their application in thermoelectric devices for commercial use. The enhancements in these models offer the potential to identify the best solutions for these challenges and accelerate thermoelectric research through the reduction in experimental and computational costs. This perspective underscores and examines recent advancements and approaches from the materials community in artificial intelligence to address the challenges in the thermoelectric area and to surpass existing limitations. Additionally, it presents insights into the material features influencing model decisions for thermoelectric property predictions and in some cases new thermoelectric material discovery. In the end, the perspective addresses current challenges and future potential studies beyond classical machine learning studies for thermoelectric research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LMDD发布了新的文献求助10
1秒前
完美世界应助专注的老太采纳,获得10
1秒前
bertha325发布了新的文献求助10
1秒前
1秒前
2秒前
hahah发布了新的文献求助10
2秒前
2秒前
2秒前
打打应助于林渤采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
3秒前
4秒前
4秒前
orixero应助别摆烂了采纳,获得10
5秒前
CipherSage应助别摆烂了采纳,获得10
5秒前
小二郎应助别摆烂了采纳,获得10
5秒前
打打应助别摆烂了采纳,获得10
5秒前
5秒前
Lucas应助别摆烂了采纳,获得10
5秒前
在水一方应助别摆烂了采纳,获得10
5秒前
斯文败类应助别摆烂了采纳,获得10
5秒前
Lucas应助别摆烂了采纳,获得10
5秒前
ding应助别摆烂了采纳,获得10
5秒前
5秒前
Kizi2021完成签到,获得积分0
6秒前
6秒前
6秒前
ZZZ发布了新的文献求助10
6秒前
7秒前
王杰发布了新的文献求助10
7秒前
泽ze应助听风采纳,获得240
7秒前
笑点低饼干完成签到,获得积分20
8秒前
yanghq13发布了新的文献求助10
8秒前
乐乐应助妥妥采纳,获得10
8秒前
8秒前
9秒前
寂寞致幻发布了新的文献求助50
9秒前
9秒前
热心的幻巧关注了科研通微信公众号
9秒前
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809937
求助须知:如何正确求助?哪些是违规求助? 3354482
关于积分的说明 10371171
捐赠科研通 3070884
什么是DOI,文献DOI怎么找? 1686607
邀请新用户注册赠送积分活动 811030
科研通“疑难数据库(出版商)”最低求助积分说明 766484