超声波传感器
传感器
声学
材料科学
计算机科学
物理
作者
Wei Lei,Sheng Liu,Fang Dong
出处
期刊:Symmetry
[MDPI AG]
日期:2025-02-25
卷期号:17 (3): 348-348
被引量:1
摘要
This paper investigates the symmetrical layout effect in ultrasonic cleaning via acoustic solid coupling simulation, with emphasis on how the symmetrical arrangement of transducers influences sound pressure distribution. Two specific transducer layout methods are examined: uniform arrangement at the bottom and symmetrical arrangement along the sides. The findings indicate that when the tank length is an integer multiple of one-quarter of the acoustic wavelength, the symmetrical side arrangement markedly enhances the sound pressure level within the tank and optimizes the propagation and reflection of acoustic waves. In megasonic cleaning, focusing is achieved through a 7 × 7 transducer array by precisely controlling the phase, and the symmetrical arrangement ensures uniform sound pressure distribution. By integrating 1 MHz megasonic sources from both focused and unfocused configurations, the overall sound pressure distribution and peak sound pressure at the focal point are calculated using multi-physics field coupling simulations. A comparative analysis of the sound fields generated by focused and unfocused sources reveals that the focused source can produce significantly higher sound pressure in specific regions. Leveraging the enhanced cleaning capability of the focused acoustic wave in targeted areas while maintaining broad coverage with the unfocused acoustic wave significantly improves the overall cleaning efficiency. Ultrasonic cleaning finds extensive applications in industries such as electronic component manufacturing, medical device sterilization, and automotive parts cleaning. Its efficiency and environmental friendliness make it highly significant for both daily life and industrial production.
科研通智能强力驱动
Strongly Powered by AbleSci AI