Automated Wavefunction Identification and Performance Prediction for Interband Cascade Lasers Using Neural Networks

级联 人工神经网络 鉴定(生物学) 激光器 波函数 计算机科学 人工智能 物理 生物系统 工程类 光学 量子力学 生物 植物 化学工程
作者
Kun Wang,Yang Chen,An-Tian Du,Jian-Chu Wu,Qian Gong,Chunfang Cao,Jing Yang,Ruotao Liu,Hua Huang
出处
期刊:Journal of Physics D [Institute of Physics]
标识
DOI:10.1088/1361-6463/adc749
摘要

Abstract The Interband Cascade Laser (ICL) represents a significant class of mid-infrared lasers, offering valuable applications across a range of scientific and technological domains. The conventional approach to designing ICL relies on the expertise of the designers and extensive simulation tests, which is time-consuming and restricts the flexibility of the design process. In this paper, we present an automated wavefunction identification program that rapidly and accurately identifies key wavefunctions in ICL band diagrams using neural networks, achieving an Area Under Curve (AUC) of greater than 90%. Based on the results of the automatic identification, a neural network model is employed to predict the key performance metrics of ICL. The model focuses on transition energies and overlap of electron and hole wavefunctions in the W-type active region, as well as energy level differences D1 and D2 between electron and hole wave functions in the injector. By employing automated hyperparameter optimization, a mean square error of 10⁻⁴ was attained after 100 epochs, with high R-squared values of 0.996, 0.948, 0.957, and 0.965 for the transition energy, D1, D2 and overlap. Moreover, it takes only 12s for the trained neural network to obtain the results of two thousand structures, which is about 20,000 times faster than the traditional simulation method (240,000 s). On the basis of the predicted results, the optimal structure of the ICL was rapidly identified while simultaneously considering the W-type active and injected region wave functions. The predicted optimal structure for the 4.6 µm wavelength emission achieves a high overlap (0.424) at a low theoretical average electric field (66 kV/cm). The results obtained by our approach were found to be in close agreement with the real simulation results, with a maximum error of only 3%. This provides a valuable strategy and a convenient method for optimizing ICL designs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好聋五完成签到,获得积分10
1秒前
finger完成签到,获得积分10
1秒前
2秒前
乐观紫发布了新的文献求助10
2秒前
2秒前
ponysmile发布了新的文献求助10
3秒前
郦稀完成签到,获得积分10
3秒前
曦月完成签到,获得积分10
3秒前
李健应助Y123456采纳,获得10
4秒前
杰瑞完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
Jasper应助泯珉采纳,获得10
6秒前
情怀应助碎月采纳,获得10
6秒前
龙舞星完成签到,获得积分10
7秒前
7秒前
LordRedScience完成签到,获得积分10
7秒前
奥雷里亚诺的小金鱼完成签到,获得积分10
8秒前
瑶瑶酱完成签到,获得积分10
9秒前
小狐狸发布了新的文献求助10
9秒前
甲乙丙丁发布了新的文献求助10
10秒前
CodeCraft应助1leven采纳,获得10
10秒前
cdh1994完成签到,获得积分0
11秒前
燕子非关注了科研通微信公众号
12秒前
13秒前
端庄的豆芽完成签到,获得积分10
13秒前
14秒前
充电宝应助菠萝兔子采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
16秒前
直率的费曼完成签到 ,获得积分10
16秒前
翻滚的肉夹馍完成签到,获得积分10
16秒前
小狐狸完成签到,获得积分20
16秒前
稳住完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808375
求助须知:如何正确求助?哪些是违规求助? 3353104
关于积分的说明 10363207
捐赠科研通 3069307
什么是DOI,文献DOI怎么找? 1685461
邀请新用户注册赠送积分活动 810551
科研通“疑难数据库(出版商)”最低求助积分说明 766193