MMSAD—A multi-modal student attentiveness detection in smart education using facial features and landmarks

计算机科学 情态动词 人工智能 人机交互 计算机视觉 多媒体 化学 高分子化学
作者
Ruchi Singh,E. Ramanujam,Naresh Babu Muppalaneni
出处
期刊:Journal of Ambient Intelligence and Smart Environments [IOS Press]
标识
DOI:10.1177/18761364251315239
摘要

Virtual education (online education or e-learning) is a form of education where the primary mode of instruction is through digital platforms and the Internet. This approach offers flexibility and accessibility, making it attractive to many students. Many institutes also offer virtual professional courses for business and working professionals. However, ensuring the reachability of courses and evaluating students’ attentiveness presents significant challenges for educators teaching virtually. Various research works have been proposed to evaluate students’ attentiveness using facial landmarks, facial expressions, eye movements, gestures, postures, etc. However, no method has been proposed for real-time analysis and evaluation. This paper introduces a multi-modal student attentiveness detection (MMSAD) model designed to analyze and evaluate real-time class videos using two modalities: facial expressions and landmarks. Using a lightweight deep learning model, the model analyzes students’ emotions from facial expressions and identifies when a person is speaking during an online class by examining lip movements from facial landmarks. The model evaluates students’ emotions using five benchmark datasets, achieving accuracy rates of 99.05% on extended Cohn-Kanade (CK+), 87.5% on RAF-DB, 78.12% on Facial Emotion Recognition-2013 (FER-2013), 98.50% on JAFFE, and 88.01% on KDEF. The model identifies individuals speaking during the class using real-time class videos. The results from these modalities are used to predict attentiveness, categorizing students as either attentive or inattentive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
TTYYI发布了新的文献求助10
刚刚
野猪完成签到,获得积分10
刚刚
快乐的柚子完成签到,获得积分10
刚刚
合适夜柳发布了新的文献求助10
1秒前
Echo完成签到,获得积分0
1秒前
小莱发布了新的文献求助10
2秒前
二娃发布了新的文献求助10
2秒前
三哥发布了新的文献求助10
3秒前
bwh发布了新的文献求助10
5秒前
Ava应助浮爔采纳,获得10
7秒前
科研通AI6应助浮爔采纳,获得10
7秒前
独特平灵发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
12秒前
13秒前
独特的半芹完成签到,获得积分10
14秒前
ChinaNiu完成签到,获得积分10
15秒前
bwh完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
zhf发布了新的文献求助20
16秒前
16秒前
wangli发布了新的文献求助10
17秒前
17秒前
情怀应助独特平灵采纳,获得10
18秒前
18秒前
龚涵山完成签到,获得积分10
19秒前
高挑的依白完成签到 ,获得积分20
19秒前
Fhbvvv完成签到 ,获得积分10
20秒前
搜集达人应助zzj1996采纳,获得10
21秒前
赘婿应助光电很亮采纳,获得10
21秒前
子车茗应助灵巧的斓采纳,获得30
21秒前
龚涵山发布了新的文献求助30
21秒前
懵懂的冰海完成签到,获得积分10
22秒前
22秒前
22秒前
加贝峥完成签到 ,获得积分10
23秒前
爆米花应助ChinaNiu采纳,获得10
23秒前
无花果应助asdf采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492914
求助须知:如何正确求助?哪些是违规求助? 4590801
关于积分的说明 14432672
捐赠科研通 4523483
什么是DOI,文献DOI怎么找? 2478348
邀请新用户注册赠送积分活动 1463425
关于科研通互助平台的介绍 1436084