MMSAD—A multi-modal student attentiveness detection in smart education using facial features and landmarks

计算机科学 情态动词 人工智能 人机交互 计算机视觉 多媒体 化学 高分子化学
作者
Ruchi Singh,E. Ramanujam,Naresh Babu Muppalaneni
出处
期刊:Journal of Ambient Intelligence and Smart Environments [IOS Press]
卷期号:17 (3): 326-348 被引量:1
标识
DOI:10.1177/18761364251315239
摘要

Virtual education (online education or e-learning) is a form of education where the primary mode of instruction is through digital platforms and the Internet. This approach offers flexibility and accessibility, making it attractive to many students. Many institutes also offer virtual professional courses for business and working professionals. However, ensuring the reachability of courses and evaluating students’ attentiveness presents significant challenges for educators teaching virtually. Various research works have been proposed to evaluate students’ attentiveness using facial landmarks, facial expressions, eye movements, gestures, postures, etc. However, no method has been proposed for real-time analysis and evaluation. This paper introduces a multi-modal student attentiveness detection (MMSAD) model designed to analyze and evaluate real-time class videos using two modalities: facial expressions and landmarks. Using a lightweight deep learning model, the model analyzes students’ emotions from facial expressions and identifies when a person is speaking during an online class by examining lip movements from facial landmarks. The model evaluates students’ emotions using five benchmark datasets, achieving accuracy rates of 99.05% on extended Cohn-Kanade (CK+), 87.5% on RAF-DB, 78.12% on Facial Emotion Recognition-2013 (FER-2013), 98.50% on JAFFE, and 88.01% on KDEF. The model identifies individuals speaking during the class using real-time class videos. The results from these modalities are used to predict attentiveness, categorizing students as either attentive or inattentive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jorgan完成签到,获得积分10
刚刚
xx完成签到,获得积分10
刚刚
852应助cuicui采纳,获得10
2秒前
2秒前
深情安青应助Glimmer采纳,获得10
3秒前
含蓄小夏发布了新的文献求助10
4秒前
socras完成签到 ,获得积分10
5秒前
lsl发布了新的文献求助10
7秒前
蓝天应助77采纳,获得10
7秒前
小桔啊完成签到 ,获得积分10
8秒前
8秒前
风清扬发布了新的文献求助10
8秒前
科研通AI6.1应助不敢装睡采纳,获得10
10秒前
xmy完成签到,获得积分10
10秒前
ddd完成签到 ,获得积分10
10秒前
别再熬夜完成签到,获得积分20
11秒前
12秒前
12秒前
orixero应助flash采纳,获得10
12秒前
VK2801发布了新的文献求助10
13秒前
一如既往完成签到,获得积分10
13秒前
14秒前
喻吉喵喵应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
深海完成签到,获得积分10
15秒前
lsl完成签到,获得积分10
15秒前
瘦瘦幼丝发布了新的文献求助10
16秒前
dingyuting完成签到,获得积分10
16秒前
清萍红檀完成签到,获得积分10
17秒前
自然怀寒完成签到,获得积分10
17秒前
来杯冰美式完成签到,获得积分10
18秒前
18秒前
QP34完成签到 ,获得积分10
18秒前
茉莉花完成签到,获得积分10
18秒前
王璐完成签到,获得积分10
19秒前
山君完成签到,获得积分20
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877028
求助须知:如何正确求助?哪些是违规求助? 6539180
关于积分的说明 15680336
捐赠科研通 4995690
什么是DOI,文献DOI怎么找? 2692279
邀请新用户注册赠送积分活动 1634484
关于科研通互助平台的介绍 1592165