Dental implant artifacts: Evaluation of photon counting CT-derived virtual monoenergetic images in combination with iterative metal artifact reduction algorithms

医学 还原(数学) 工件(错误) 算法 核医学 植入 计算机视觉 生物医学工程 医学物理学 外科 几何学 计算机科学 数学
作者
Julian Schreck,Julius Henning Niehoff,Saher Saeed,Jan Robert Kroeger,Simon Lennartz,Kai Roman Laukamp,Jan Borggrefe,Arwed Elias Michael
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:: 112117-112117
标识
DOI:10.1016/j.ejrad.2025.112117
摘要

To examine photon counting-CT (PCCT)-derived virtual monoenergetic images (VMI) in combination with iterative metal artifacts reduction algorithms (iMAR) for artifact reduction in patients with dental implants (DI). 49 patients with DI were retrospectively included in the study. Polyenergetic CT images (CI), VMIs with different energy levels (70-190 keV) without and the same images with iMAR were examined. ROI-based measurements of hypo- and hyperdense artifacts in different tissues (soft tissues, bones, vessels) were performed. Qualitative assessment of the extent of artifacts, surrounding bone and soft tissue was performed by two radiologists using a Likert scale. iMAR effectively reduced hypo- and hyperdense artifacts by solitary application and in combination with VMI. In contrast, solitary application of VMI did not yield sufficient artifact reduction. Optimal quantitative reduction was achieved in VMIiMAR 100 keV for hypodense artifacts and 70 keV for hyperdense artifacts. VMIiMAR 190 keV provided optimal artifact reduction in bones and vessels. In the qualitative evaluation, the extent of artifact reduction received significantly higher ratings on VMIiMAR than CI. VMIiMAR 190 keV was rated best for evaluation of artifact-affected soft tissue and bone, VMI did not yield significant improvements. iMAR as a standalone approach and the combination of iMAR and VMI significantly reduce artifacts by DI and improve the assessability of adjacent tissue. Combination of iMAR and VMI worked best at keV levels higher than 100 keV. Combination of iMAR and PCCT-derived VMI is a useful approach for enhancing the diagnostic assessability of the maxillofacial area in patients with dental implants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助ziyuexu采纳,获得10
刚刚
在望应助路漫漫其修远兮采纳,获得10
1秒前
1秒前
lyt发布了新的文献求助10
1秒前
DU完成签到,获得积分10
2秒前
new_vision发布了新的文献求助10
2秒前
封皮人发布了新的文献求助10
2秒前
3秒前
传奇3应助程之杭采纳,获得10
3秒前
桔梗完成签到,获得积分10
3秒前
linelolo完成签到,获得积分10
4秒前
宇文书翠完成签到,获得积分10
4秒前
4秒前
5秒前
香蕉觅云应助Frenda采纳,获得10
5秒前
科研通AI5应助M芦芦M采纳,获得10
6秒前
冷静发布了新的文献求助10
6秒前
6秒前
英姑应助lyt采纳,获得10
6秒前
杨震发布了新的文献求助10
6秒前
东君完成签到,获得积分10
7秒前
niniinininin发布了新的文献求助10
7秒前
曹kn完成签到,获得积分10
7秒前
Ava应助大橙子采纳,获得10
7秒前
爆米花应助伶俐的血茗采纳,获得10
7秒前
紫曦发布了新的文献求助10
8秒前
润润发布了新的文献求助10
8秒前
12完成签到 ,获得积分10
8秒前
diupapa发布了新的文献求助10
8秒前
9秒前
xu发布了新的文献求助10
10秒前
曹kn发布了新的文献求助10
11秒前
persist发布了新的文献求助10
11秒前
汉堡包应助finejade采纳,获得10
12秒前
大个应助daydreamammaking采纳,获得10
12秒前
含蓄秀发布了新的文献求助10
13秒前
13秒前
14秒前
魈玖驳回了zd应助
14秒前
日尧发布了新的文献求助10
14秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848487
求助须知:如何正确求助?哪些是违规求助? 3391309
关于积分的说明 10566616
捐赠科研通 3111802
什么是DOI,文献DOI怎么找? 1714956
邀请新用户注册赠送积分活动 825534
科研通“疑难数据库(出版商)”最低求助积分说明 775623