Crop type classification with combined spectral, texture, and radar features of time-series Sentinel-1 and Sentinel-2 data

遥感 雷达 合成孔径雷达 计算机科学 上下文图像分类 特征(语言学) 时间序列 人工智能 地理 机器学习 电信 语言学 哲学 图像(数学)
作者
Gang Cheng,Huan Ding,Jie Yang,Yu-Shu Cheng
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (4): 1215-1237 被引量:1
标识
DOI:10.1080/01431161.2023.2176723
摘要

Crop type mapping visualizes the spatial distribution pattern and proportion of planting areas of different crop types, which is the basis for subsequent agricultural applications. Although optical remote sensing has been widely used to monitor crop dynamics, data are not always available due to cloud and other atmospheric effects on optical sensors. Satellite microwave systems such as Synthetic Aperture Radar (SAR) have all-time and all-weather advantages in monitoring ground and crop conditions, combining optical imagery and SAR imagery for crop type classification is of great significance. Our study mainly proposes seven feature combination schemes based on the combination of multi-temporal spectral features and texture features of Sentinel-2 (S2), and radar backscattering features of Sentinel-1 (S1) evaluate the influence of different data sources and different features on classification accuracy, obtains the optimal classification strategy and analyses the contribution of different features to classification result, in the aim of providing a new technical approach for the fine identification of crops from multi-source remote-sensing data. Results show that the crop classification accuracy of combined multi-time series spectral, texture, and radar features is higher than that of combining two types of features. The features subset selected by multi-period spectral, texture, and radar features have the best classification result, the overall accuracy (OA) and kappa coefficients reach 96.40% and 0.93, respectively. The study provides a method reference for future research on larger-scale remote-sensing crop precise extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榴莲完成签到,获得积分10
1秒前
1秒前
2秒前
yyy完成签到,获得积分10
3秒前
李健的小迷弟应助Sun采纳,获得10
4秒前
芝士奶盖有点咸完成签到 ,获得积分10
4秒前
陈辉完成签到,获得积分10
4秒前
4秒前
科研通AI5应助鲨鱼鱼采纳,获得10
5秒前
为你博弈完成签到,获得积分10
5秒前
liang发布了新的文献求助10
6秒前
薛妖怪完成签到,获得积分10
8秒前
8秒前
大力犀牛发布了新的文献求助10
9秒前
9秒前
jijiboy完成签到,获得积分10
10秒前
11秒前
12秒前
南浔完成签到 ,获得积分10
12秒前
头号玩家完成签到,获得积分10
13秒前
liyan完成签到 ,获得积分10
13秒前
一减完成签到 ,获得积分10
14秒前
阿曾完成签到 ,获得积分10
14秒前
JING发布了新的文献求助10
14秒前
奥里给发布了新的文献求助10
14秒前
木子发布了新的文献求助10
14秒前
Sun发布了新的文献求助10
16秒前
北风完成签到 ,获得积分10
16秒前
薛妖怪完成签到,获得积分10
17秒前
19秒前
沉静的歌曲完成签到,获得积分10
19秒前
mawenyu完成签到,获得积分10
19秒前
wyg117完成签到,获得积分10
21秒前
yangzhang完成签到,获得积分10
22秒前
陈嗲嗲发布了新的文献求助10
22秒前
JING完成签到,获得积分20
24秒前
xty完成签到,获得积分10
25秒前
上官若男应助我爱查文献采纳,获得10
27秒前
fazat完成签到,获得积分20
28秒前
大力犀牛完成签到,获得积分10
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726