Artificial neural network processed linear-light tristimulus and hue parameters of fluorescence for smartphone assisted point-of-care testing device

检测点注意事项 色调 人工神经网络 计算机科学 RGB颜色模型 人工智能 生物医学工程 医学 病理
作者
Huiting Chen,Zehong Zhuang,Siyun Guo,Shang-Fang Xie,Xin Yu,Yuying Chen,Sixue Ouyang,Wei Zhao,Kui Shen,Jia Tao,Peng Zhao
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:384: 133659-133659 被引量:11
标识
DOI:10.1016/j.snb.2023.133659
摘要

Smartphone based point-of-care testing (POCT) device has progressed rapidly for its advantages in simulating the main functions of large instruments. The capability of multiple biomarkers detection and the robust data acquiring and processing ability are significant for POCT device to meet the needs of convenient diagnostics. In this work, a POCT device was developed based on the cascade reaction of targets catalyzed by corresponding oxidases and leaf like zeolitic imidazolate framework. It was found that both linear-light tristimulus (RGB) and hue parameters (HSV) of fluorescence image of cascade reaction product were highly related with target concentration. Furthermore, a smartphone application was constructed to analyze the RGB and HSV of fluorescence to predict target level utilizing artificial neural network (ANN) algorithm. The regression values (R) for the training and validation of four targets were all higher than 95 %. The device realized the off-line detection of targets within 50 min in serum sample, and the assay results were comparable with standard methods. It also performed well in identifying the normal and abnormal serum samples. The proposed platform combining with the smartphone application could be used as a handy and costless POCT device for the rapid monitoring of metabolic biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jessiefuli发布了新的文献求助10
2秒前
qz驳回了Hello应助
4秒前
6秒前
在水一方应助白色城堡采纳,获得10
6秒前
6秒前
朴素烨霖完成签到,获得积分10
6秒前
科研通AI2S应助秋秋秋采纳,获得10
7秒前
田様应助HaHa007采纳,获得10
7秒前
chb1973关注了科研通微信公众号
7秒前
开心的茗茗完成签到 ,获得积分10
9秒前
9秒前
9秒前
无聊的熠彤完成签到,获得积分10
10秒前
朴素烨霖发布了新的文献求助10
12秒前
小翁发布了新的文献求助10
12秒前
万能图书馆应助羲月采纳,获得10
15秒前
childe完成签到,获得积分10
15秒前
16秒前
minever白完成签到,获得积分10
16秒前
等待思远完成签到,获得积分10
17秒前
17秒前
Mr.Jian完成签到,获得积分10
17秒前
共享精神应助郭辉采纳,获得10
19秒前
19秒前
汉堡包应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得20
24秒前
科目三应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
半柚发布了新的文献求助10
25秒前
含糊的灵雁完成签到,获得积分10
25秒前
27秒前
羲月发布了新的文献求助10
31秒前
小透明发布了新的文献求助20
36秒前
37秒前
李爱国应助氢气采纳,获得10
39秒前
盛夏如花发布了新的文献求助20
39秒前
嗒嗒小医生关注了科研通微信公众号
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782342
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233274
捐赠科研通 3042733
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876