已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable deep learning-based clinical decision support engine for MRI-based automated diagnosis of temporomandibular joint anterior disk displacement

人工智能 计算机科学 感兴趣区域 金标准(测试) 医学诊断 接收机工作特性 矢状面 深度学习 颞颚关节功能障碍 模式识别(心理学) 尤登J统计 颞下颌关节 磁共振成像 机器学习 医学 放射科 口腔正畸科
作者
Kyubaek Yoon,Jae‐Young Kim,Sun‐Jong Kim,Jong‐Ki Huh,Jin‐Woo Kim,Jongeun Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:233: 107465-107465 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107465
摘要

MRI is considered the gold standard for diagnosing anterior disc displacement (ADD), the most common temporomandibular joint (TMJ) disorder. However, even highly trained clinicians find it difficult to integrate the dynamic nature of MRI with the complicated anatomical features of the TMJ. As the first validated study for MRI-based automatic TMJ ADD diagnosis, we propose a clinical decision support engine that diagnoses TMJ ADD using MR images and provides heat maps as the visualized rationale of diagnostic predictions using explainable artificial intelligence.The engine builds on two deep learning models. The first deep learning model detects a region of interest (ROI) containing three TMJ components (i.e., temporal bone, disc, and condyle) in the entire sagittal MR image. The second deep learning model classifies TMJ ADD into three classes (i.e., normal, ADD without reduction, and ADD with reduction) within the detected ROI. In this retrospective study, the models were developed and tested on the dataset acquired between April 2005 to April 2020. The additional independent dataset acquired at a different hospital between January 2016 to February 2019 was used for the external test of the classification model. Detection performance was assessed by mean average precision (mAP). Classification performance was assessed by the area under the receiver operating characteristic (AUROC), sensitivity, specificity, and Youden's index. 95% confidence intervals were calculated via non-parametric bootstrap to assess the statistical significance of model performances.The ROI detection model achieved mAP of 0.819 at 0.75 intersection over union (IoU) thresholds in the internal test. In internal and external tests, the ADD classification model achieved AUROC values of 0.985 and 0.960, sensitivities of 0.950 and 0.926, and specificities of 0.919 and 0.892, respectively.The proposed explainable deep learning-based engine provides clinicians with the predictive result and its visualized rationale. The clinicians can make the final diagnosis by integrating primary diagnostic prediction obtained from the proposed engine with the patient's clinical examination findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的小刺猬完成签到,获得积分10
1秒前
CC完成签到,获得积分0
1秒前
1秒前
领导范儿应助zerowey采纳,获得10
3秒前
7秒前
自然馈赠发布了新的文献求助10
9秒前
xiaixax发布了新的文献求助10
10秒前
落清欢发布了新的文献求助10
10秒前
12秒前
Nikki发布了新的文献求助50
12秒前
CC爱学习完成签到,获得积分20
14秒前
CC爱学习发布了新的文献求助10
17秒前
落清欢完成签到,获得积分10
21秒前
chestnut灬完成签到 ,获得积分10
22秒前
Nikki完成签到,获得积分10
25秒前
西蓝花香菜完成签到 ,获得积分10
28秒前
Leviathan完成签到 ,获得积分10
28秒前
jyy应助科研通管家采纳,获得10
40秒前
40秒前
英俊的铭应助科研通管家采纳,获得10
40秒前
827584450应助科研通管家采纳,获得10
40秒前
英俊的铭应助科研通管家采纳,获得10
40秒前
传奇3应助cyx2045采纳,获得10
40秒前
黯然完成签到 ,获得积分10
42秒前
hbj完成签到,获得积分10
42秒前
claud完成签到 ,获得积分0
45秒前
笑笑发布了新的文献求助50
49秒前
希望天下0贩的0应助Kim采纳,获得10
51秒前
cc完成签到,获得积分10
51秒前
58秒前
59秒前
布丁拿铁发布了新的文献求助10
1分钟前
Kim发布了新的文献求助10
1分钟前
刻苦天寿完成签到 ,获得积分10
1分钟前
1分钟前
壮观的谷冬完成签到 ,获得积分10
1分钟前
Kim完成签到,获得积分10
1分钟前
和谐的果汁完成签到 ,获得积分10
1分钟前
cyx2045发布了新的文献求助10
1分钟前
闪闪乘风完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784776
求助须知:如何正确求助?哪些是违规求助? 3330019
关于积分的说明 10243948
捐赠科研通 3045312
什么是DOI,文献DOI怎么找? 1671612
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759465