Explainable deep learning-based clinical decision support engine for MRI-based automated diagnosis of temporomandibular joint anterior disk displacement

人工智能 计算机科学 感兴趣区域 金标准(测试) 医学诊断 接收机工作特性 矢状面 深度学习 颞颚关节功能障碍 模式识别(心理学) 尤登J统计 颞下颌关节 磁共振成像 机器学习 医学 放射科 口腔正畸科
作者
Kyubaek Yoon,Jae‐Young Kim,Sun‐Jong Kim,Jong‐Ki Huh,Jin‐Woo Kim,Jongeun Choi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:233: 107465-107465 被引量:23
标识
DOI:10.1016/j.cmpb.2023.107465
摘要

MRI is considered the gold standard for diagnosing anterior disc displacement (ADD), the most common temporomandibular joint (TMJ) disorder. However, even highly trained clinicians find it difficult to integrate the dynamic nature of MRI with the complicated anatomical features of the TMJ. As the first validated study for MRI-based automatic TMJ ADD diagnosis, we propose a clinical decision support engine that diagnoses TMJ ADD using MR images and provides heat maps as the visualized rationale of diagnostic predictions using explainable artificial intelligence.The engine builds on two deep learning models. The first deep learning model detects a region of interest (ROI) containing three TMJ components (i.e., temporal bone, disc, and condyle) in the entire sagittal MR image. The second deep learning model classifies TMJ ADD into three classes (i.e., normal, ADD without reduction, and ADD with reduction) within the detected ROI. In this retrospective study, the models were developed and tested on the dataset acquired between April 2005 to April 2020. The additional independent dataset acquired at a different hospital between January 2016 to February 2019 was used for the external test of the classification model. Detection performance was assessed by mean average precision (mAP). Classification performance was assessed by the area under the receiver operating characteristic (AUROC), sensitivity, specificity, and Youden's index. 95% confidence intervals were calculated via non-parametric bootstrap to assess the statistical significance of model performances.The ROI detection model achieved mAP of 0.819 at 0.75 intersection over union (IoU) thresholds in the internal test. In internal and external tests, the ADD classification model achieved AUROC values of 0.985 and 0.960, sensitivities of 0.950 and 0.926, and specificities of 0.919 and 0.892, respectively.The proposed explainable deep learning-based engine provides clinicians with the predictive result and its visualized rationale. The clinicians can make the final diagnosis by integrating primary diagnostic prediction obtained from the proposed engine with the patient's clinical examination findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无语的鱼完成签到,获得积分10
2秒前
研友_VZG7GZ应助madao采纳,获得10
5秒前
ixueyi发布了新的文献求助10
6秒前
英俊溪灵发布了新的文献求助10
6秒前
阿萨姆完成签到,获得积分10
7秒前
兰彻完成签到,获得积分10
7秒前
ch3oh完成签到,获得积分10
13秒前
18秒前
之道完成签到,获得积分10
19秒前
蝈蝈完成签到,获得积分10
22秒前
madao发布了新的文献求助10
23秒前
24秒前
25秒前
FashionBoy应助林文勇采纳,获得10
26秒前
丘比特应助一支布洛芬采纳,获得10
28秒前
我不困完成签到,获得积分10
28秒前
29秒前
32秒前
Cc完成签到,获得积分10
33秒前
lc完成签到 ,获得积分10
34秒前
34秒前
xl完成签到 ,获得积分10
35秒前
36秒前
36秒前
37秒前
英俊溪灵完成签到,获得积分10
38秒前
宁静致远完成签到,获得积分10
38秒前
Rita发布了新的文献求助10
38秒前
39秒前
75986686发布了新的文献求助10
39秒前
义气的惜霜完成签到,获得积分10
40秒前
林文勇发布了新的文献求助10
40秒前
40秒前
害羞大碗发布了新的文献求助10
40秒前
乐乐应助无算浮白采纳,获得10
41秒前
42秒前
隐形曼青应助madao采纳,获得10
43秒前
kaka发布了新的文献求助20
43秒前
林海发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805002
求助须知:如何正确求助?哪些是违规求助? 4121187
关于积分的说明 12751126
捐赠科研通 3854578
什么是DOI,文献DOI怎么找? 2122643
邀请新用户注册赠送积分活动 1144867
关于科研通互助平台的介绍 1036093