亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

透视图(图形) 方位(导航) 计算机科学 机器学习 钥匙(锁) 人工智能 预测建模 工程类 工业工程 风险分析(工程) 计算机安全 医学
作者
Jiaxian Chen,Ruyi Huang,Zhuyun Chen,Wentao Mao,Weihua Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:193: 110239-110239 被引量:184
标识
DOI:10.1016/j.ymssp.2023.110239
摘要

Accurate remaining useful life (RUL) prediction for rolling bearings encounters many challenges such as complex degradation processes, varying working conditions, and insufficient run-to-failure data. Transfer learning (TL), one paradigm of artificial intelligence technology, has demonstrated its powerful performance and great effectiveness for such challenges. As a result, many TL-based solutions have been widely developed and extensively studied for rolling bearing RUL prediction. Admittedly, several review articles have been published on RUL prediction. Nevertheless, the majority of these articles only concentrated on deep learning-based RUL prediction methods, and a review article that systematically overviews the status of TL-based RUL prediction has not been published. Therefore, it is urgent and significant to thoroughly summarize the academic publications and industrial applications related to TL-based RUL prediction, and present its potential challenges and future research directions. With such goals, the problem definitions of TL-based RUL prediction, the general procedure of RUL prediction, and typical TL-based RUL prediction algorithms are first introduced to help researchers quickly overview the state-of-the-art approaches and recent developments. Thereafter, relevant TL-based RUL prediction solutions are comprehensively discussed from the perspectives of three industrial scenarios, providing suggestions to researchers and engineers for selecting appropriate solutions in practical industrial applications. Finally, the key challenges and future trends in RUL prediction are presented to conclude this paper. We hope that this review of TL-based RUL prediction for rolling bearings can contribute to a better understanding of intelligent prognostic technology and will inspire researchers to extend their work on RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
虞无声完成签到,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
2分钟前
2分钟前
计时器响了完成签到,获得积分10
2分钟前
2分钟前
77发布了新的文献求助10
2分钟前
77完成签到,获得积分10
3分钟前
WerWu完成签到,获得积分0
3分钟前
大个应助Ankzz采纳,获得10
4分钟前
4分钟前
善学以致用应助余馨怡采纳,获得10
4分钟前
Ankzz发布了新的文献求助10
4分钟前
搜集达人应助ST采纳,获得10
4分钟前
4分钟前
Ganfei完成签到,获得积分20
5分钟前
56完成签到,获得积分20
5分钟前
5分钟前
5分钟前
5分钟前
56发布了新的文献求助10
5分钟前
善学以致用应助Ankzz采纳,获得10
5分钟前
6分钟前
Ankzz发布了新的文献求助10
6分钟前
nojego完成签到,获得积分10
7分钟前
追寻元菱应助顺利的雁梅采纳,获得10
7分钟前
Lucas应助Ankzz采纳,获得30
7分钟前
8分钟前
四月发布了新的文献求助10
8分钟前
YifanWang应助科研通管家采纳,获得10
8分钟前
8分钟前
MRHJ发布了新的文献求助10
8分钟前
小蘑菇应助starry采纳,获得10
8分钟前
9分钟前
9分钟前
MRHJ完成签到,获得积分20
9分钟前
9分钟前
Ankzz发布了新的文献求助30
9分钟前
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211217
求助须知:如何正确求助?哪些是违规求助? 4387777
关于积分的说明 13663151
捐赠科研通 4247823
什么是DOI,文献DOI怎么找? 2330552
邀请新用户注册赠送积分活动 1328311
关于科研通互助平台的介绍 1281187