亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

透视图(图形) 方位(导航) 计算机科学 机器学习 钥匙(锁) 人工智能 预测建模 工程类 工业工程 风险分析(工程) 计算机安全 医学
作者
Jiaxian Chen,Ruyi Huang,Zhuyun Chen,Wentao Mao,Weihua Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:193: 110239-110239 被引量:110
标识
DOI:10.1016/j.ymssp.2023.110239
摘要

Accurate remaining useful life (RUL) prediction for rolling bearings encounters many challenges such as complex degradation processes, varying working conditions, and insufficient run-to-failure data. Transfer learning (TL), one paradigm of artificial intelligence technology, has demonstrated its powerful performance and great effectiveness for such challenges. As a result, many TL-based solutions have been widely developed and extensively studied for rolling bearing RUL prediction. Admittedly, several review articles have been published on RUL prediction. Nevertheless, the majority of these articles only concentrated on deep learning-based RUL prediction methods, and a review article that systematically overviews the status of TL-based RUL prediction has not been published. Therefore, it is urgent and significant to thoroughly summarize the academic publications and industrial applications related to TL-based RUL prediction, and present its potential challenges and future research directions. With such goals, the problem definitions of TL-based RUL prediction, the general procedure of RUL prediction, and typical TL-based RUL prediction algorithms are first introduced to help researchers quickly overview the state-of-the-art approaches and recent developments. Thereafter, relevant TL-based RUL prediction solutions are comprehensively discussed from the perspectives of three industrial scenarios, providing suggestions to researchers and engineers for selecting appropriate solutions in practical industrial applications. Finally, the key challenges and future trends in RUL prediction are presented to conclude this paper. We hope that this review of TL-based RUL prediction for rolling bearings can contribute to a better understanding of intelligent prognostic technology and will inspire researchers to extend their work on RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
01完成签到,获得积分20
1秒前
6秒前
英俊的铭应助zxc167采纳,获得10
9秒前
11秒前
白一航完成签到,获得积分20
13秒前
小熊完成签到,获得积分10
13秒前
15秒前
彩色篮球完成签到,获得积分10
15秒前
小熊发布了新的文献求助10
16秒前
白一航发布了新的文献求助30
17秒前
17秒前
zoey发布了新的文献求助10
22秒前
zxc167发布了新的文献求助10
22秒前
芋子爱吃土豆完成签到,获得积分10
23秒前
彩色篮球发布了新的文献求助10
25秒前
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
bkagyin应助zoey采纳,获得10
30秒前
sougardenist完成签到,获得积分10
31秒前
殷勤的冰菱完成签到,获得积分10
40秒前
虚心沂发布了新的文献求助10
47秒前
Hxq完成签到 ,获得积分10
1分钟前
叶mt完成签到 ,获得积分10
1分钟前
Orange应助FANYE采纳,获得10
1分钟前
俏皮代丝关注了科研通微信公众号
1分钟前
1分钟前
深情安青应助01采纳,获得50
1分钟前
FANYE发布了新的文献求助10
1分钟前
1分钟前
外向白开水完成签到 ,获得积分10
1分钟前
konosuba完成签到,获得积分0
1分钟前
Sid应助姜宇航采纳,获得50
1分钟前
许结朱陈完成签到 ,获得积分10
1分钟前
司徒灵松发布了新的文献求助30
2分钟前
鲤鱼越越完成签到 ,获得积分10
2分钟前
姜宇航完成签到 ,获得积分10
2分钟前
li发布了新的文献求助10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919887
求助须知:如何正确求助?哪些是违规求助? 3464943
关于积分的说明 10935245
捐赠科研通 3193177
什么是DOI,文献DOI怎么找? 1764487
邀请新用户注册赠送积分活动 854936
科研通“疑难数据库(出版商)”最低求助积分说明 794528