Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

透视图(图形) 方位(导航) 计算机科学 机器学习 钥匙(锁) 人工智能 预测建模 工程类 工业工程 风险分析(工程) 医学 计算机安全
作者
Jiaxian Chen,Ruyi Huang,Zhuyun Chen,Wentao Mao,Weihua Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:193: 110239-110239 被引量:80
标识
DOI:10.1016/j.ymssp.2023.110239
摘要

Accurate remaining useful life (RUL) prediction for rolling bearings encounters many challenges such as complex degradation processes, varying working conditions, and insufficient run-to-failure data. Transfer learning (TL), one paradigm of artificial intelligence technology, has demonstrated its powerful performance and great effectiveness for such challenges. As a result, many TL-based solutions have been widely developed and extensively studied for rolling bearing RUL prediction. Admittedly, several review articles have been published on RUL prediction. Nevertheless, the majority of these articles only concentrated on deep learning-based RUL prediction methods, and a review article that systematically overviews the status of TL-based RUL prediction has not been published. Therefore, it is urgent and significant to thoroughly summarize the academic publications and industrial applications related to TL-based RUL prediction, and present its potential challenges and future research directions. With such goals, the problem definitions of TL-based RUL prediction, the general procedure of RUL prediction, and typical TL-based RUL prediction algorithms are first introduced to help researchers quickly overview the state-of-the-art approaches and recent developments. Thereafter, relevant TL-based RUL prediction solutions are comprehensively discussed from the perspectives of three industrial scenarios, providing suggestions to researchers and engineers for selecting appropriate solutions in practical industrial applications. Finally, the key challenges and future trends in RUL prediction are presented to conclude this paper. We hope that this review of TL-based RUL prediction for rolling bearings can contribute to a better understanding of intelligent prognostic technology and will inspire researchers to extend their work on RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
止戈完成签到,获得积分10
刚刚
跳跃的惮发布了新的文献求助10
刚刚
科研通AI5应助天天向上采纳,获得10
1秒前
1秒前
1秒前
斯文败类应助yuuuke采纳,获得10
1秒前
2秒前
做实验的猹完成签到,获得积分10
2秒前
Summer完成签到,获得积分10
2秒前
wwx完成签到,获得积分10
3秒前
淡然篮球完成签到,获得积分10
3秒前
3秒前
胡图完成签到,获得积分10
3秒前
无牙完成签到,获得积分10
3秒前
感动水杯完成签到 ,获得积分10
3秒前
魔幻嚓茶完成签到,获得积分10
4秒前
科研通AI5应助暖若安阳采纳,获得150
4秒前
4秒前
huohuo发布了新的文献求助10
4秒前
max完成签到,获得积分10
5秒前
wwx发布了新的文献求助10
5秒前
Yimi完成签到,获得积分10
6秒前
迷路的秋发布了新的文献求助10
6秒前
6秒前
Hommand_藏山完成签到,获得积分10
7秒前
8秒前
不安的白昼完成签到 ,获得积分10
8秒前
苻莞完成签到,获得积分10
8秒前
8秒前
PUMCHmy完成签到,获得积分10
8秒前
9秒前
wenxianxia完成签到,获得积分20
9秒前
肉丝儿发布了新的文献求助10
9秒前
zhou发布了新的文献求助10
9秒前
东郭以云完成签到,获得积分10
10秒前
10秒前
10秒前
科研助手6应助跑调的joker采纳,获得10
10秒前
深情安青应助杨怂怂采纳,获得10
10秒前
456发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785072
求助须知:如何正确求助?哪些是违规求助? 3330486
关于积分的说明 10246402
捐赠科研通 3045842
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800814
科研通“疑难数据库(出版商)”最低求助积分说明 759665