Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

透视图(图形) 方位(导航) 计算机科学 机器学习 钥匙(锁) 人工智能 预测建模 工程类 工业工程 风险分析(工程) 计算机安全 医学
作者
Jiaxian Chen,Ruyi Huang,Zhuyun Chen,Wentao Mao,Weihua Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:193: 110239-110239 被引量:125
标识
DOI:10.1016/j.ymssp.2023.110239
摘要

Accurate remaining useful life (RUL) prediction for rolling bearings encounters many challenges such as complex degradation processes, varying working conditions, and insufficient run-to-failure data. Transfer learning (TL), one paradigm of artificial intelligence technology, has demonstrated its powerful performance and great effectiveness for such challenges. As a result, many TL-based solutions have been widely developed and extensively studied for rolling bearing RUL prediction. Admittedly, several review articles have been published on RUL prediction. Nevertheless, the majority of these articles only concentrated on deep learning-based RUL prediction methods, and a review article that systematically overviews the status of TL-based RUL prediction has not been published. Therefore, it is urgent and significant to thoroughly summarize the academic publications and industrial applications related to TL-based RUL prediction, and present its potential challenges and future research directions. With such goals, the problem definitions of TL-based RUL prediction, the general procedure of RUL prediction, and typical TL-based RUL prediction algorithms are first introduced to help researchers quickly overview the state-of-the-art approaches and recent developments. Thereafter, relevant TL-based RUL prediction solutions are comprehensively discussed from the perspectives of three industrial scenarios, providing suggestions to researchers and engineers for selecting appropriate solutions in practical industrial applications. Finally, the key challenges and future trends in RUL prediction are presented to conclude this paper. We hope that this review of TL-based RUL prediction for rolling bearings can contribute to a better understanding of intelligent prognostic technology and will inspire researchers to extend their work on RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmol发布了新的文献求助10
1秒前
1秒前
嘻嘻我发布了新的文献求助10
2秒前
2秒前
ff_ng77完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
狂野菠萝发布了新的文献求助10
5秒前
慕青应助王羊补牢采纳,获得10
6秒前
快乐小子发布了新的文献求助10
6秒前
洋洋麻麻发布了新的文献求助10
6秒前
ximi发布了新的文献求助10
7秒前
jingtan完成签到,获得积分10
7秒前
薛之谦发布了新的文献求助10
7秒前
星辰发布了新的文献求助10
8秒前
熊泰山完成签到 ,获得积分10
8秒前
8秒前
传奇3应助古月采纳,获得10
8秒前
haha完成签到,获得积分20
8秒前
李健的小迷弟应助柯hdq采纳,获得10
11秒前
青藤完成签到,获得积分10
11秒前
11秒前
汉堡包应助可爱安筠采纳,获得10
11秒前
李BO完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
唐浩阑发布了新的文献求助10
14秒前
superlit完成签到,获得积分10
15秒前
王羊补牢发布了新的文献求助10
16秒前
18秒前
huan完成签到,获得积分10
18秒前
wendy完成签到,获得积分10
18秒前
桐桐应助Pomelo采纳,获得10
18秒前
19秒前
摸虞芥雏子完成签到,获得积分10
19秒前
顺心小凝完成签到,获得积分10
20秒前
充电宝应助xuan采纳,获得10
20秒前
SciGPT应助一块司康饼采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
全球及中国7nm节点及以下先进制程技术行业市场发展现状及发展前景研究报告(2025-2030版) 1000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4488758
求助须知:如何正确求助?哪些是违规求助? 3943117
关于积分的说明 12228544
捐赠科研通 3599871
什么是DOI,文献DOI怎么找? 1979686
邀请新用户注册赠送积分活动 1016557
科研通“疑难数据库(出版商)”最低求助积分说明 909691