已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence–Enhanced Electrocardiography for Prediction of Incident Hypertension

医学 队列 亚临床感染 内科学 心电图 心脏病学 急诊医学
作者
Arunashis Sau,Joseph Barker,Libor Pastika,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Nicholas S. Peters,Declan P. O’Regan,James S. Ware,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
出处
期刊:JAMA Cardiology [American Medical Association]
被引量:1
标识
DOI:10.1001/jamacardio.2024.4796
摘要

Importance Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence–enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension. Objective To develop an AI-ECG risk estimator (AIRE) to predict incident hypertension (AIRE-HTN) and stratify risk for hypertension-associated adverse outcomes. Design, Setting, and Participants This was a development and external validation prognostic cohort study conducted at Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts, a secondary care setting. External validation was conducted in the UK Biobank (UKB), a UK-based volunteer cohort. AIRE-HTN was trained and tested to predict incident hypertension using routinely collected ECGs from patients at BIDMC between 2014 and 2023. The algorithm was then evaluated to risk stratify patients for hypertension- associated adverse outcomes and externally validated on UKB data between 2014 and 2022 for both incident hypertension and risk stratification Main Outcomes and Measures AIRE-HTN, which uses a residual convolutional neural network architecture with a discrete-time survival loss function, was trained to predict incident hypertension. Results AIRE-HTN was trained on 1 163 401 ECGs from 189 539 patients (mean [SD] age, 57.7 [18.7] years; 98 747 female [52.1%]) at BIDMC. A total of 19 423 BIDMC patients composed the test set and were evaluated for incident hypertension. From the UKB, AIRE-HTN was tested on 65 610 ECGs from same number of participants (mean [SD] age, 65.4 [7.9] years; 33 785 female [51.5%]). A total of 35 806 UKB patients were evaluated for incident hypertension. AIRE-HTN predicted incident hypertension (BIDMC: n = 6446 [33%] events; C index, 0.70; 95% CI, 0.69-0.71; UKB: n = 1532 [4%] events; C index, 0.70; 95% CI, 0.69-0.71). Performance was maintained in individuals without left ventricular hypertrophy and those with normal ECGs (C indices, 0.67-0.72). AIRE-HTN was significantly additive to existing clinical risk factors in predicting incident hypertension (continuous net reclassification index, BIDMC: 0.44; 95% CI, 0.33-0.53; UKB: 0.32; 95% CI, 0.23-0.37). In adjusted Cox models, AIRE-HTN score was an independent predictor of cardiovascular death (hazard ratio [HR] per standard deviation, 2.24; 95% CI, 1.67-3.00) and stratified risk for heart failure (HR, 2.60; 95% CI, 2.22-3.04), myocardial infarction (HR, 3.13; 95% CI, 2.55-3.83), ischemic stroke (HR, 1.23; 95% CI, 1.11-1.37), and chronic kidney disease (HR, 1.89; 95% CI, 1.68-2.12), beyond traditional risk factors. Conclusions and Relevance Results suggest that AIRE-HTN, an AI-ECG model, can predict incident hypertension and identify patients at risk of hypertension-related adverse events, beyond conventional clinical risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyy完成签到 ,获得积分10
1秒前
浅辰完成签到 ,获得积分10
2秒前
3秒前
aging123完成签到,获得积分10
4秒前
4秒前
aging123发布了新的文献求助10
7秒前
安雯发布了新的文献求助10
7秒前
Zzzzzzzz关注了科研通微信公众号
7秒前
企鹅发布了新的文献求助20
10秒前
梅西完成签到 ,获得积分10
12秒前
18秒前
22秒前
大意的绿蓉完成签到,获得积分10
22秒前
gost发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
Jeffery完成签到,获得积分10
27秒前
greentea完成签到,获得积分10
28秒前
28秒前
Jeffery发布了新的文献求助10
29秒前
CipherSage应助企鹅采纳,获得10
30秒前
君看一叶舟完成签到 ,获得积分10
30秒前
韭黄发布了新的文献求助10
31秒前
gyh发布了新的文献求助10
31秒前
科目三应助韭黄采纳,获得10
36秒前
苗条白枫完成签到 ,获得积分10
36秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
wanci应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
猪猪hero应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
38秒前
随遇而安应助科研通管家采纳,获得10
38秒前
科研通AI5应助肖珍珠采纳,获得10
38秒前
Hxq关闭了Hxq文献求助
39秒前
shen完成签到 ,获得积分10
39秒前
小鱼儿完成签到 ,获得积分10
40秒前
keira发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10219057
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440