Artificial Intelligence–Enhanced Electrocardiography for Prediction of Incident Hypertension

医学 队列 亚临床感染 内科学 心电图 心脏病学 急诊医学
作者
Arunashis Sau,Joseph Barker,Libor Pastika,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Nicholas S. Peters,Declan P. O’Regan,James S. Ware,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
出处
期刊:JAMA Cardiology [American Medical Association]
被引量:8
标识
DOI:10.1001/jamacardio.2024.4796
摘要

Importance Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence–enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension. Objective To develop an AI-ECG risk estimator (AIRE) to predict incident hypertension (AIRE-HTN) and stratify risk for hypertension-associated adverse outcomes. Design, Setting, and Participants This was a development and external validation prognostic cohort study conducted at Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts, a secondary care setting. External validation was conducted in the UK Biobank (UKB), a UK-based volunteer cohort. AIRE-HTN was trained and tested to predict incident hypertension using routinely collected ECGs from patients at BIDMC between 2014 and 2023. The algorithm was then evaluated to risk stratify patients for hypertension- associated adverse outcomes and externally validated on UKB data between 2014 and 2022 for both incident hypertension and risk stratification Main Outcomes and Measures AIRE-HTN, which uses a residual convolutional neural network architecture with a discrete-time survival loss function, was trained to predict incident hypertension. Results AIRE-HTN was trained on 1 163 401 ECGs from 189 539 patients (mean [SD] age, 57.7 [18.7] years; 98 747 female [52.1%]) at BIDMC. A total of 19 423 BIDMC patients composed the test set and were evaluated for incident hypertension. From the UKB, AIRE-HTN was tested on 65 610 ECGs from same number of participants (mean [SD] age, 65.4 [7.9] years; 33 785 female [51.5%]). A total of 35 806 UKB patients were evaluated for incident hypertension. AIRE-HTN predicted incident hypertension (BIDMC: n = 6446 [33%] events; C index, 0.70; 95% CI, 0.69-0.71; UKB: n = 1532 [4%] events; C index, 0.70; 95% CI, 0.69-0.71). Performance was maintained in individuals without left ventricular hypertrophy and those with normal ECGs (C indices, 0.67-0.72). AIRE-HTN was significantly additive to existing clinical risk factors in predicting incident hypertension (continuous net reclassification index, BIDMC: 0.44; 95% CI, 0.33-0.53; UKB: 0.32; 95% CI, 0.23-0.37). In adjusted Cox models, AIRE-HTN score was an independent predictor of cardiovascular death (hazard ratio [HR] per standard deviation, 2.24; 95% CI, 1.67-3.00) and stratified risk for heart failure (HR, 2.60; 95% CI, 2.22-3.04), myocardial infarction (HR, 3.13; 95% CI, 2.55-3.83), ischemic stroke (HR, 1.23; 95% CI, 1.11-1.37), and chronic kidney disease (HR, 1.89; 95% CI, 1.68-2.12), beyond traditional risk factors. Conclusions and Relevance Results suggest that AIRE-HTN, an AI-ECG model, can predict incident hypertension and identify patients at risk of hypertension-related adverse events, beyond conventional clinical risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天发CNS了嘛完成签到,获得积分10
刚刚
Sun完成签到,获得积分10
2秒前
星辰大海应助Joy采纳,获得10
2秒前
亦周完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
crystaler完成签到 ,获得积分10
10秒前
mugglea完成签到 ,获得积分10
12秒前
14秒前
翊楠完成签到,获得积分10
15秒前
明理宛秋完成签到 ,获得积分10
15秒前
16秒前
徐团伟完成签到 ,获得积分10
16秒前
zcq完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
SCI的芷蝶完成签到 ,获得积分10
20秒前
脑洞疼应助翊楠采纳,获得10
20秒前
酷波er应助scarlet采纳,获得30
20秒前
dongdongyao发布了新的文献求助10
20秒前
轻歌水越完成签到 ,获得积分10
23秒前
Sweet完成签到 ,获得积分10
24秒前
NI完成签到 ,获得积分10
26秒前
foyefeng完成签到,获得积分10
28秒前
31秒前
禾页完成签到 ,获得积分10
32秒前
万有引力139完成签到,获得积分10
33秒前
自觉夏彤完成签到,获得积分10
33秒前
薄雪草完成签到,获得积分10
35秒前
LUYAO1完成签到 ,获得积分10
37秒前
38秒前
量子星尘发布了新的文献求助10
43秒前
圆月弯刀完成签到 ,获得积分10
44秒前
Camellia发布了新的文献求助10
44秒前
854fycchjh完成签到,获得积分10
45秒前
高高完成签到 ,获得积分10
46秒前
46秒前
sdfwsdfsd完成签到,获得积分10
54秒前
霸气南珍完成签到,获得积分10
58秒前
萧水白完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635561
求助须知:如何正确求助?哪些是违规求助? 4737857
关于积分的说明 14990659
捐赠科研通 4793306
什么是DOI,文献DOI怎么找? 2560463
邀请新用户注册赠送积分活动 1520422
关于科研通互助平台的介绍 1480707