Analysis and Imaging of Osteocytes

神经科学 医学 生物
作者
Mohammad Niroobakhsh,Yixia Xie,Sarah L. Dallas,David S. Moore,Mark L. Johnson,Ganesh Thiagarajan
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (213) 被引量:1
标识
DOI:10.3791/64699
摘要

Osteocytes are the bone cells that are thought to respond to mechanical strains and fluid flow shear stress (FFSS) by activating various biological pathways in a process known as mechanotransduction. Confocal image-derived models of osteocyte networks are a valuable tool for conducting Computational Fluid Dynamics (CFD) analysis to evaluate shear stresses on the osteocyte membrane, which cannot be determined by direct measurement. Computational modeling using these high-resolution images of the microstructural architecture of bone was used to numerically simulate the mechanical loading exerted on bone and understand the load-induced stimulation of osteocytes. This study elaborates on the methods to develop 3D single osteocyte models using confocal microscope images of the Lacunar-Canalicular Network (LCN) to perform CFD analysis utilizing various computational modeling software. Prior to confocal microscopy, the mouse bones are sectioned and stained with Fluorescein isothiocyanate (FITC) dye to label the LCN. At 100x resolution, Z-stack images are collected using a confocal microscope and imported into MIMICS software (3D image-based processing software) to construct a surface model of the LCN and osteocyte-dendritic processes. These surfaces are then subtracted using a Boolean operation in 3-Matic software (3D data optimization software) to model the lacunar fluidic space around the osteocyte cell body and canalicular space around the dendrites containing lacunocanalicular fluid. 3D volumetric fluid geometry is imported into ANSYS software (simulation software) for CFD analysis. ANSYS CFX (CFD software) is used to apply physiological loading on the bone as fluid pressure, and the wall shear stresses on the osteocytes and dendritic processes are determined. The morphology of the LCN affects the shear stress values sensed by the osteocyte cell membrane and cell processes. Therefore, the details of how confocal image-based models are developed can be valuable in understanding osteocyte mechanosensation and can lay the groundwork for future studies in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二十又澪完成签到,获得积分10
2秒前
青青完成签到,获得积分10
2秒前
周周发布了新的文献求助10
2秒前
Foch发布了新的文献求助10
3秒前
阿空发布了新的文献求助10
3秒前
zjy完成签到,获得积分20
3秒前
4秒前
sinan发布了新的文献求助10
4秒前
orixero应助北岭雪兮采纳,获得10
4秒前
LjXiong完成签到,获得积分10
5秒前
未名白发布了新的文献求助10
6秒前
SciGPT应助清脆的书桃采纳,获得10
7秒前
Do完成签到,获得积分10
8秒前
8秒前
summer完成签到,获得积分10
8秒前
joshar完成签到,获得积分10
11秒前
浮游应助PLA采纳,获得10
12秒前
13秒前
SHL完成签到,获得积分10
13秒前
14秒前
Lucien应助科研小白采纳,获得20
15秒前
典雅的夜安完成签到,获得积分10
16秒前
hhr完成签到 ,获得积分10
17秒前
英姑应助bb采纳,获得10
17秒前
北岭雪兮发布了新的文献求助10
18秒前
dd发布了新的文献求助10
19秒前
zhaoqing完成签到,获得积分10
20秒前
无名花生完成签到 ,获得积分10
20秒前
顾矜应助kyJYbs采纳,获得10
20秒前
周周完成签到,获得积分10
21秒前
bkagyin应助lance采纳,获得10
21秒前
丸子完成签到,获得积分10
22秒前
希望天下0贩的0应助geold采纳,获得10
23秒前
小蘑菇应助wkkky采纳,获得10
23秒前
26秒前
随缘完成签到 ,获得积分10
26秒前
进击的小羊完成签到,获得积分10
27秒前
28秒前
小马甲应助liz采纳,获得10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082510
求助须知:如何正确求助?哪些是违规求助? 4299889
关于积分的说明 13397348
捐赠科研通 4123694
什么是DOI,文献DOI怎么找? 2258552
邀请新用户注册赠送积分活动 1262835
关于科研通互助平台的介绍 1196778