微塑料
吸附
海水
烷基
聚苯乙烯
环境化学
自然(考古学)
化学
天然有机质
有机化学
生态学
生物
聚合物
有机质
古生物学
吸附
作者
Badreddine Barhoumi,Marc Métian,Carlos Alonso‐Hernández,François Oberhaënsli,Nikolaos Mourgkogiannis,Hrissi K. Karapanagioti,Philippe Bersuder,Imma Tolosa
出处
期刊:Heliyon
[Elsevier BV]
日期:2024-11-16
卷期号:10 (23): e40490-e40490
被引量:2
标识
DOI:10.1016/j.heliyon.2024.e40490
摘要
Microplastics (MPs) are abundant in aquatic environments and due to their small size, surface properties, and strong hydrophobicity, they can easily sorb chemicals, thus potentially acting as pollutant carriers. To date, most studies investigating the sorption of chemicals on MPs have principally focused on virgin MPs. However, MPs in the environment undergo aging effects, which changes their physical-chemical properties and aptitude to interact with chemicals, such as per- and polyfluorinated alkyl substances (PFAS) referred to as "forever chemicals". In this study, we compared the sorption behavior of nine PFAS, exhibiting different physical-chemical properties, on virgin and naturally aged polystyrene microplastic (PS-MPs) to explore to what extent the environmental aging affects the sorption behavior of the PS-MPs for different legacy and emerging PFAS in seawater. Differences in the morphology and surface properties of aged PS-MPs were examined by infrared spectroscopy, surface area analysis, scanning electron microscopy, and X-ray diffraction. Results revealed that compared to virgin PS-MPs, aged PS-MPs exhibited morphological changes (e.g. cavities, pits, and rough surfaces) with biofilm development and signs of oxidation on the MPs surface. PFAS sorption on PS-MPs was enhanced for the aged PS-MPs compared to virgin PS-MPs with K
科研通智能强力驱动
Strongly Powered by AbleSci AI