A Vertical Federated Multi-View Fuzzy Clustering Method for Incomplete Data

计算机科学 聚类分析 原始数据 灵活性(工程) 数据挖掘 过程(计算) 模糊聚类 模糊逻辑 机器学习 分布式计算 人工智能 数学 统计 操作系统 程序设计语言
作者
Yan Li,Xingchen Hu,Shengju Yu,Weiping Ding,Witold Pedrycz,Chai Kiat Yeo,Zhong Liu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tfuzz.2025.3526978
摘要

Multi-view fuzzy clustering (MVFC) has gained widespread adoption owing to its inherent flexibility in handling ambiguous data. The proliferation of privatization devices has driven the emergence of new challenge in MVFC researches. Federated learning, a technique that can jointly train without directly using raw data, has gain significant attention in decentralized MVFC. However, their applicability depends on the assumptions of data integrity and independence between different views. In fact, while within distributed environments, data typically exhibits two challenging problems: (1) multiple views within a single client; (2) incomplete data. Existing methods exhibit limitations in effectively addressing these challenges. Hence, in this study, we aim at achieving the effective clustering for incomplete data by a novel vertical federated MVFC framework. Specifically, a unified clustering framework is designed to capture both local client learning and global server training. For the local client learning, the data reconstruction strategy and prototype alignment strategy are introduced to ensure the preservation of data structure and refinement of clustering relationships, which mitigates the impact of incomplete data. Meanwhile, the global training process implements aggregation based on client-specific information. The whole process is realized based on the unified fuzzy clustering framework, promoting collaborative learning between client-specific and server information. Theoretical analyses and extensive experiments are carefully conducted to validate the effectiveness and efficiency of the proposed method from multiple perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小滨发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
5秒前
zwk发布了新的文献求助10
6秒前
wanci应助巫马采纳,获得10
7秒前
ding应助VDC采纳,获得10
7秒前
沧浪江完成签到,获得积分10
8秒前
Villanellel完成签到,获得积分10
9秒前
小二郎应助Charley采纳,获得10
9秒前
燕燕于飞发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
goufufu完成签到,获得积分10
12秒前
丘比特应助请qing采纳,获得10
13秒前
彭于晏应助shadow采纳,获得10
13秒前
hailiangzheng完成签到,获得积分10
13秒前
科研通AI5应助咖可乐采纳,获得10
14秒前
14秒前
科研通AI5应助Muncy采纳,获得10
15秒前
共享精神应助水枝采纳,获得10
16秒前
jgs发布了新的文献求助10
16秒前
泡沫发布了新的文献求助10
17秒前
所所应助子墨采纳,获得10
17秒前
17秒前
知还发布了新的文献求助10
17秒前
19秒前
19秒前
九儿完成签到 ,获得积分10
20秒前
21秒前
vv完成签到,获得积分10
21秒前
CipherSage应助lily采纳,获得10
21秒前
欧欧发布了新的文献求助10
22秒前
李健的粉丝团团长应助jgs采纳,获得10
22秒前
麦香鱼发布了新的文献求助20
22秒前
22秒前
zwk完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785657
求助须知:如何正确求助?哪些是违规求助? 3331079
关于积分的说明 10250021
捐赠科研通 3046482
什么是DOI,文献DOI怎么找? 1672111
邀请新用户注册赠送积分活动 800991
科研通“疑难数据库(出版商)”最低求助积分说明 759907