A Vertical Federated Multi-View Fuzzy Clustering Method for Incomplete Data

计算机科学 聚类分析 原始数据 灵活性(工程) 数据挖掘 过程(计算) 模糊聚类 模糊逻辑 机器学习 分布式计算 人工智能 数学 统计 操作系统 程序设计语言
作者
Yan Li,Xingchen Hu,Shengju Yu,Weiping Ding,Witold Pedrycz,Chai Kiat Yeo,Zhong Liu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tfuzz.2025.3526978
摘要

Multi-view fuzzy clustering (MVFC) has gained widespread adoption owing to its inherent flexibility in handling ambiguous data. The proliferation of privatization devices has driven the emergence of new challenge in MVFC researches. Federated learning, a technique that can jointly train without directly using raw data, has gain significant attention in decentralized MVFC. However, their applicability depends on the assumptions of data integrity and independence between different views. In fact, while within distributed environments, data typically exhibits two challenging problems: (1) multiple views within a single client; (2) incomplete data. Existing methods exhibit limitations in effectively addressing these challenges. Hence, in this study, we aim at achieving the effective clustering for incomplete data by a novel vertical federated MVFC framework. Specifically, a unified clustering framework is designed to capture both local client learning and global server training. For the local client learning, the data reconstruction strategy and prototype alignment strategy are introduced to ensure the preservation of data structure and refinement of clustering relationships, which mitigates the impact of incomplete data. Meanwhile, the global training process implements aggregation based on client-specific information. The whole process is realized based on the unified fuzzy clustering framework, promoting collaborative learning between client-specific and server information. Theoretical analyses and extensive experiments are carefully conducted to validate the effectiveness and efficiency of the proposed method from multiple perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶公子发布了新的文献求助10
刚刚
1秒前
伯赏芷烟发布了新的文献求助10
1秒前
脑洞疼应助aaaaaa采纳,获得10
2秒前
2秒前
2秒前
baby3480完成签到,获得积分10
2秒前
天狮星上的人完成签到,获得积分10
3秒前
蔺忘幽发布了新的文献求助10
4秒前
木香完成签到,获得积分10
4秒前
俊逸惜雪关注了科研通微信公众号
5秒前
5秒前
qq发布了新的文献求助10
6秒前
crazyant发布了新的文献求助10
7秒前
爱吃大米发布了新的文献求助10
7秒前
7秒前
8秒前
萌兴完成签到 ,获得积分10
10秒前
无花果应助伯赏芷烟采纳,获得10
11秒前
徐扬完成签到,获得积分10
11秒前
JamesPei应助crazyant采纳,获得10
12秒前
BareBear应助zwy1216采纳,获得10
13秒前
14秒前
123发布了新的文献求助10
14秒前
CodeCraft应助sun采纳,获得10
15秒前
一往之前发布了新的文献求助20
15秒前
15秒前
15秒前
aaaaaa发布了新的文献求助10
18秒前
豆花浮元子完成签到 ,获得积分10
18秒前
iwhsgfes发布了新的文献求助30
19秒前
20秒前
wuhan发布了新的文献求助10
20秒前
Owen应助蔺忘幽采纳,获得10
22秒前
22秒前
静迹完成签到,获得积分10
23秒前
24秒前
哩哩啦啦发布了新的文献求助10
27秒前
Ryusei发布了新的文献求助30
27秒前
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079238
求助须知:如何正确求助?哪些是违规求助? 3618531
关于积分的说明 11484201
捐赠科研通 3334960
什么是DOI,文献DOI怎么找? 1833203
邀请新用户注册赠送积分活动 902532
科研通“疑难数据库(出版商)”最低求助积分说明 821114