Construction of the bromodomain-containing protein-associated prognostic model in triple-negative breast cancer

小桶 三阴性乳腺癌 乳腺癌 肿瘤科 计算生物学 溴尿嘧啶 基因 比例危险模型 生物 癌症研究 基因表达 癌症 内科学 医学 转录组 遗传学 表观遗传学
作者
Wei Chen,Yushuai Yu,Chenxi Wang,Zirong Jiang,Xiewei Huang,Yidan Lin,Hongjing Han,Qing Wang,Hui Zhang
出处
期刊:Cancer Cell International [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12935-025-03648-7
摘要

Bromodomain-containing protein (BRD) play a pivotal role in the development and progression of malignant tumours. This study aims to identify prognostic genes linked to BRD-related genes (BRDRGs) in patients with triple-negative breast cancer (TNBC) and to construct a novel prognostic model. Data from TCGA-TNBC, GSE135565, and GSE161529 were retrieved from public databases. GSE161529 was used to identify key cell types. The BRDRGs score in TCGA-TNBC was calculated using single-sample Gene Set Enrichment Analysis (ssGSEA). Differential expression analysis was performed to identify differentially expressed genes (DEGs): DEGs1 in key cells, DEGs2 between tumours and controls and DEGs3 in high and low BRDRGs score subgroups in TCGA-TNBC. Differentially expressed BRDRGs (DE-BRDRGs) were determined by overlapping DEGs1, DEGs2 and DEGs3. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network analysis were conducted to investigate active pathways and molecular interactions. Prognostic genes were selected through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses to construct a risk model and calculate risk scores. TNBC samples from TCGA-TNBC were classified into high and low-risk groups based on the median risk score. Additionally, correlations with clinical characteristics, Gene Set Enrichment Analysis (GSEA), immune analysis, and pseudotime analysis were performed. A total of 120 DE-BRDRGs were identified by overlapping 605 DEGs1 from four key cell types, 10,776 DEGs2, and 4,497 DEGs3. GO analysis revealed enriched terms such as 'apoptotic process,' 'immune response,' and 'regulation of the cell cycle,' while 56 KEGG pathways, including the 'MAPK signaling pathway,' were associated with DE-BRDRGs. A risk model comprising six prognostic genes (KRT6A, PGF, ABCA1, EDNRB, CTSD and GJA4) was constructed. A nomogram based on independent prognostic factors was also developed. Immune cell abundance was significantly higher in high-risk group. In both risk groups, TP53 exhibited the highest mutation frequency. The expression of KRT6A, ABCA1, EDNRB, and CTSD went decreased progressively in pseudotime. A novel prognostic model for TNBC associated with BRDRGs was developed and validated, providing fresh insights into the relationship between BRD and TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的早晨完成签到,获得积分10
1秒前
青黛完成签到 ,获得积分10
6秒前
lth完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
Serein完成签到,获得积分10
18秒前
terryok完成签到 ,获得积分10
21秒前
kanong完成签到,获得积分0
21秒前
孙哈哈完成签到 ,获得积分10
26秒前
乌托邦完成签到,获得积分10
32秒前
7788完成签到,获得积分10
33秒前
35秒前
zhang完成签到 ,获得积分10
39秒前
Sofia完成签到 ,获得积分10
41秒前
乐乐应助海猫食堂采纳,获得10
41秒前
量子星尘发布了新的文献求助10
42秒前
乐正成危发布了新的文献求助10
42秒前
上官若男应助海猫食堂采纳,获得10
43秒前
共享精神应助忧伤的绍辉采纳,获得10
46秒前
HarryYang完成签到 ,获得积分10
49秒前
STH完成签到 ,获得积分10
49秒前
整齐百褶裙完成签到 ,获得积分10
50秒前
小米稀饭完成签到 ,获得积分10
50秒前
鲲鹏完成签到 ,获得积分10
51秒前
奋斗慕凝完成签到 ,获得积分10
53秒前
Driscoll完成签到 ,获得积分10
54秒前
Joy完成签到,获得积分10
57秒前
666完成签到 ,获得积分10
57秒前
JACK完成签到,获得积分10
58秒前
百香果bxg完成签到 ,获得积分10
59秒前
1分钟前
荣浩宇完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
乐正成危完成签到 ,获得积分10
1分钟前
海猫食堂完成签到,获得积分10
1分钟前
俞无声完成签到 ,获得积分10
1分钟前
Dellamoffy完成签到,获得积分10
1分钟前
任小九完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868049
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667126
捐赠科研通 3134524
什么是DOI,文献DOI怎么找? 1729156
邀请新用户注册赠送积分活动 833184
科研通“疑难数据库(出版商)”最低求助积分说明 780620