Deep Learning Model for Predicting Immunotherapy Response in Advanced Non−Small Cell Lung Cancer

医学 内科学 肺癌 肿瘤科 队列 免疫疗法 队列研究 癌症
作者
Mehrdad Rakaee,Masoud Tafavvoghi,Biagio Ricciuti,Joao V. Alessi,Alessio Cortellini,Fabrizio Citarella,Lorenzo Nibid,Giuseppe Perrone,Elio Adib,Claudia Angela Maria Fulgenzi,Cássio Murilo Trovo Hidalgo Filho,Alessandro Di Federico,Falah Jabar,Sayed M.S. Hashemi,Ilias Houda,Elin Richardsen,Lill‐Tove Busund,Tom Dønnem,Idris Bahce,David J. Pinato
出处
期刊:JAMA Oncology [American Medical Association]
被引量:1
标识
DOI:10.1001/jamaoncol.2024.5356
摘要

Importance Only a small fraction of patients with advanced non−small cell lung cancer (NSCLC) respond to immune checkpoint inhibitor (ICI) treatment. For optimal personalized NSCLC care, it is imperative to identify patients who are most likely to benefit from immunotherapy. Objective To develop a supervised deep learning−based ICI response prediction method; evaluate its performance alongside other known predictive biomarkers; and assess its association with clinical outcomes in patients with advanced NSCLC. Design, Setting, and Participants This multicenter cohort study developed and independently validated a deep learning−based response stratification model for predicting ICI treatment outcome in patients with advanced NSCLC from whole slide hematoxylin and eosin–stained images. Images for model development and validation were obtained from 1 participating center in the US and 3 in the European Union (EU) from August 2014 to December 2022. Data analyses were performed from September 2022 to May 2024. Exposure Monotherapy with ICIs. Main Outcomes and Measures Model performance measured by clinical end points and objective response rate (ORR) differentiation power vs other predictive biomarkers, ie, programmed death-ligand 1 (PD-L1), tumor mutational burden (TMB), and tumor-infiltrating lymphocytes (TILs). Results A total of 295 581 image tiles from 958 patients (mean [SD] age, 66.0 [10.6] years; 456 [48%] females and 502 [52%] males) treated with ICI for NSCLC were included in the analysis. The US-based development cohort consisted of 614 patients with median (IQR) follow-up time of 54.5 (38.2-68.1) months, and the EU-based validation cohort, 344 patients with 43.3 (27.4-53.9) months of follow-up. The ORR to ICI was 26% in the developmental cohort and 28% in the validation cohort. The deep learning model’s area under the receiver operating characteristic curve (AUC) for ORR was 0.75 (95% CI, 0.64-0.85) in the internal test set and 0.66 (95% CI, 0.60-0.72) in the validation cohort. In a multivariable analysis, the deep learning model’s score was an independent predictor of ICI response in the validation cohort for both progression-free (hazard ratio, 0.56; 95% CI, 0.42-0.76; P < .001) and overall survival (hazard ratio, 0.53; 95% CI, 0.39-0.73; P < .001). The tuned deep learning model achieved a higher AUC than TMB, TILs, and PD-L1 in the internal set; in the validation cohort, it was superior to TILs and comparable with PD-L1 (AUC, 0.67; 95% CI, 0.60-0.74), with a 10-percentage point improvement in specificity. In the validation cohort, combining the deep learning model with PD-L1 scores achieved an AUC of 0.70 (95% CI, 0.63-0.76), outperforming either marker alone, with a response rate of 51% compared to 41% for PD-L1 (≥50%) alone. Conclusions and Relevance The findings of this cohort study demonstrate a strong and independent deep learning−based feature associated with ICI response in patients with NSCLC across various cohorts. Clinical use of this deep learning model could refine treatment precision and better identify patients who are likely to benefit from ICI for treatment of advanced NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助笨笨忘幽采纳,获得10
刚刚
爱听歌契完成签到 ,获得积分10
刚刚
1秒前
Komorebi完成签到,获得积分10
2秒前
SCI完成签到 ,获得积分10
2秒前
段段砖完成签到 ,获得积分10
5秒前
daixan89完成签到 ,获得积分10
5秒前
6秒前
流浪完成签到,获得积分10
8秒前
10秒前
yakami完成签到,获得积分20
10秒前
lx发布了新的文献求助10
11秒前
毅力鸟完成签到,获得积分10
14秒前
研友_VZG7GZ应助立军采纳,获得10
14秒前
鲤角兽完成签到,获得积分10
14秒前
cdercder完成签到,获得积分0
15秒前
myl发布了新的文献求助10
15秒前
睡觉觉了完成签到,获得积分20
16秒前
大鹏完成签到,获得积分10
17秒前
桐桐应助guangshuang采纳,获得10
18秒前
Jason完成签到,获得积分10
19秒前
善学以致用应助woobinhua采纳,获得10
20秒前
研究新人完成签到,获得积分10
22秒前
大傻春完成签到 ,获得积分10
22秒前
蓝桉完成签到 ,获得积分10
22秒前
Aurora.H发布了新的文献求助10
23秒前
ryan1300完成签到 ,获得积分10
25秒前
student完成签到 ,获得积分10
25秒前
小燕子完成签到 ,获得积分10
26秒前
颿曦发布了新的文献求助10
29秒前
31秒前
缓慢的海云完成签到,获得积分10
35秒前
CUREME完成签到,获得积分10
35秒前
guangshuang发布了新的文献求助10
36秒前
37秒前
土木搬砖法律完成签到,获得积分10
38秒前
有且仅有完成签到 ,获得积分10
40秒前
DYDSA发布了新的文献求助25
41秒前
woobinhua发布了新的文献求助10
43秒前
yanglina062完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734