Market-aware Long-term Job Skill Recommendation with Explainable Deep Reinforcement Learning

期限(时间) 强化学习 钢筋 就业市场 计算机科学 人工智能 心理学 工程类 社会心理学 工作(物理) 机械工程 物理 量子力学
作者
Ying Sun,Yang Ji,Hengshu Zhu,Fuzhen Zhuang,Qing He,Hui Xiong
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
标识
DOI:10.1145/3704998
摘要

Continuously learning new skills is essential for talents to gain a competitive advantage in the labor market. Despite extensive efforts on relevance- or preference-based skill recommendations, little attention has been given to the practical effects of job skills in the market. To bridge this gap, we propose an explainable personalized skill learning recommendation system that considers the long-term learning benefits and costs. Specifically, we model skill learning utilities based on salary and learning cost associated with job positions and propose a multi-objective deep reinforcement learning framework to model and maximize long-term utilities. Furthermore, we propose a S elf- E xplaining S kill R ecommendation D eep Q-N etwork (SeSRDQN) that captures and prototypes prevalent skill sets in the market into representative exemplars for decision-making. SeSRDQN quantitatively decomposes the talent’s long-term learning utility into contributions from each exemplar, offering a comprehensive and multifactorial explanation across various skill learning options. To tackle the combinatorial complexity of the skill space, we develop an MCTS-based optimization-decoding iterative training procedure for explanation fidelity and human understandability. In this way, talents will receive a tailored roadmap of essential skills, complemented by exemplar-based explanations, to effectively plan their careers. Extensive experiments on a real-world dataset validate the effectiveness and explainability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
阮绝悟完成签到,获得积分10
1秒前
昵称完成签到 ,获得积分10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
hhw发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
eric888应助科研通管家采纳,获得100
2秒前
充电宝应助南山无玫落采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得30
2秒前
3秒前
3秒前
烽烽烽完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
yu应助mikey采纳,获得10
4秒前
4秒前
前进中发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
斯文败类应助陌路孤星采纳,获得10
5秒前
5秒前
5秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4102511
求助须知:如何正确求助?哪些是违规求助? 3640195
关于积分的说明 11535918
捐赠科研通 3349245
什么是DOI,文献DOI怎么找? 1840301
邀请新用户注册赠送积分活动 907311
科研通“疑难数据库(出版商)”最低求助积分说明 824503