P‐6: Redefining Pixel Circuit Analysis: Causal Discovery and Probabilistic Modeling

概率逻辑 计算机科学 像素 数据科学 人工智能 数据挖掘
作者
Kyongtae Park,Cheondeck Park,Dongso Kim,Jaewoong Kim
出处
期刊:Sid's Digest Of Technical Papers [Wiley]
卷期号:55 (1): 1383-1387 被引量:1
标识
DOI:10.1002/sdtp.17805
摘要

When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes are influenced by sequential effects. This paper presents an advanced methodology for analyzing pixel circuit design and its driving conditions, a domain characterized by complex interactions and multiple variables. Traditional machine learning methods, when applied in isolation, have shown limitations in unraveling the intricate causal relationships inherent in such systems. To address this challenge, we integrated Explainable AI (XAI) techniques, particularly SHAP (SHapley Additive exPlanations) values, into our analysis. In collaboration with domain experts, we constructed a Directed Acyclic Graph (DAG) that effectively reduced the complexity of interconnections and ensured consistency with empirical data. This approach facilitated a more accurate identification of the impact of each parameter and its causal influence. By decomposing the joint distribution of the variables into conditional distributions, taking into account their parental relationships, we gained a deeper understanding of the changes in causal mechanisms. Our methodology significantly enhanced the accuracy of causal analysis under realistic pixel driving conditions. The findings not only offer novel insights into pixel circuitry but also demonstrate the efficacy of combining machine learning with XAI in complex systems analysis, gaining wide acceptability among relevant experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助番茄炒蛋采纳,获得10
1秒前
cyclin9完成签到,获得积分10
1秒前
2秒前
3秒前
5秒前
科研通AI5应助8888采纳,获得30
5秒前
不爱吃糖发布了新的文献求助10
6秒前
7秒前
斯文的白玉完成签到,获得积分20
8秒前
白昼七七完成签到,获得积分10
9秒前
9秒前
小二郎应助天真醉波采纳,获得10
9秒前
书包王发布了新的文献求助10
9秒前
10秒前
炙热雅琴发布了新的文献求助10
11秒前
12秒前
袁大头发布了新的文献求助10
13秒前
七慕凉应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
七慕凉应助科研通管家采纳,获得20
15秒前
Quanghust2005发布了新的文献求助10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
zzz关注了科研通微信公众号
16秒前
!hau发布了新的文献求助10
16秒前
沉默问夏发布了新的文献求助10
16秒前
无问完成签到,获得积分10
17秒前
SciGPT应助炙热雅琴采纳,获得10
17秒前
20秒前
20秒前
Always完成签到 ,获得积分10
20秒前
顺心的傲柔完成签到,获得积分10
20秒前
21秒前
不爱吃糖完成签到,获得积分10
21秒前
21秒前
FashionBoy应助yyds采纳,获得10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830108
求助须知:如何正确求助?哪些是违规求助? 3372647
关于积分的说明 10473699
捐赠科研通 3092210
什么是DOI,文献DOI怎么找? 1701974
邀请新用户注册赠送积分活动 818688
科研通“疑难数据库(出版商)”最低求助积分说明 771030