Multi-view scene matching with relation aware feature perception

人工智能 计算机科学 匹配(统计) 公制(单位) 模式识别(心理学) 关系(数据库) 特征(语言学) 一致性(知识库) 感知 特征提取 比例(比率) 计算机视觉 数据挖掘 数学 地理 哲学 统计 生物 经济 地图学 神经科学 语言学 运营管理
作者
Bo Sun,Ganchao Liu,Yuan Yuan
出处
期刊:Neural Networks [Elsevier BV]
卷期号:180: 106662-106662
标识
DOI:10.1016/j.neunet.2024.106662
摘要

For scene matching, the extraction of metric features is a challenging task in the face of multi-source and multi-view scenes. Aiming at the requirements of multi-source and multi-view scene matching, a siamese network model for Spatial Relation Aware feature perception and fusion is proposed. The key contributions of this work are as follows: (1) Seeking to enhance the coherence of multi-view image features, we investigate the relation aware feature perception. With the help of spatial relation vector decomposition, the distribution consistency perception of image features in the horizontal H→ and vertical W→ directions is realized. (2) In order to establish the metric consistency relationship, the large-scale local information perception strategy is studied to realize the relative trade-off scale selection under the size of mainstream aerial images and satellite images. (3) After obtaining the multi-scale metric features, in order to improve the metric confidence, the feature selection and fusion strategy is proposed. The significance of distinct feature levels in the backbone network is systematically assessed prior to fusion, leading to an enhancement in the representation of pivotal components within the metric features during the fusion process. The experimental results obtained from the University-1652 dataset and the collected real scene data affirm the efficacy of the proposed method in enhancing the reliability of the metric model. The demonstrated effectiveness of this method suggests its applicability to diverse scene matching tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KevinT发布了新的文献求助10
刚刚
JamesPei应助秦萍采纳,获得10
刚刚
林夏发布了新的文献求助10
刚刚
无花果应助笑点低的豌豆采纳,获得10
刚刚
zjt1111111发布了新的文献求助10
1秒前
2秒前
桀桀桀发布了新的文献求助10
2秒前
3秒前
程勋航完成签到,获得积分10
4秒前
江城一霸发布了新的文献求助30
4秒前
wanci应助hyg采纳,获得10
4秒前
韋晴发布了新的文献求助10
5秒前
5秒前
沉默寻凝完成签到,获得积分10
5秒前
星辰大海应助world采纳,获得10
5秒前
圆锥香蕉应助天真的冬寒采纳,获得20
6秒前
6秒前
CipherSage应助pct采纳,获得10
7秒前
乙醇发布了新的文献求助10
7秒前
领导范儿应助zjt1111111采纳,获得10
7秒前
7秒前
Dravia应助美好的山槐采纳,获得10
7秒前
Kk完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
12秒前
美好的山槐完成签到,获得积分10
13秒前
大马猴发布了新的文献求助10
13秒前
13秒前
14秒前
千叶完成签到,获得积分10
14秒前
CipherSage应助ttaylor采纳,获得30
15秒前
NJY发布了新的文献求助10
15秒前
Xiaoxiao应助小屁孩采纳,获得30
16秒前
16秒前
萧萧发布了新的文献求助30
17秒前
爆米花应助烂漫的从彤采纳,获得10
17秒前
小二郎应助科研小辣鸡采纳,获得10
18秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056077
求助须知:如何正确求助?哪些是违规求助? 3594186
关于积分的说明 11419429
捐赠科研通 3320111
什么是DOI,文献DOI怎么找? 1825575
邀请新用户注册赠送积分活动 896639
科研通“疑难数据库(出版商)”最低求助积分说明 817927