Three-dimensional particulate volume fraction reconstruction in the fluid based on the Lambert–Beer physics information neural network

物理 人工神经网络 体积热力学 微粒 分数(化学) 统计物理学 人工智能 热力学 生态学 化学 有机化学 生物 计算机科学
作者
Qianlong Wang,Y. Y. Qian
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:1
标识
DOI:10.1063/5.0233484
摘要

The measurement of particle volume fraction in flow fields is of great significance in scientific research and engineering applications. As one of the particle detection techniques, the light extinction method is widely used in measuring nano-particles volume fraction in flow fields due to its simplicity and non-contact nature. In particular, in complex reactive flow fields like combustion reactions, the volume fraction of soot particulate and other particles can be accurately measured and reconstructed via the light extinction method that based on the Beer–Lambert law. This is crucial for exploring combustion phenomena, understanding their internal mechanisms, and reducing pollutant emissions. However, due to the enormous computational burden, current algebra reconstruction techniques struggle to achieve high-precision three-dimensional (3D) reconstruction of particles. Therefore, this paper originally proposes a 3D reconstruction algorithm based on the Beer–Lambert law physical information neural networks (LB-PINNs). By incorporating physical information as constraints into the particle reconstruction process, it is possible to achieve high-precision 3D reconstruction of particles in complex flow field environments with low computational cost. Meanwhile, to address the trade-off issues of reconstruction accuracy and smooth noise resistance in previous reconstruction algorithms, i.e., Tikhonov regularization, this paper employs dynamically adjusted regularization parameters in the LB-PINN algorithm. This approach ensures smooth noise-resistant processing while maintaining reconstruction accuracy, significantly reducing computation time and resource consumption. According to the experimental results, LB-PINNs demonstrate superior performance compared to previous reconstruction algorithms when reconstructing the soot volume fraction in complex reacting flow fields, i.e., combustion flame scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spoiled完成签到 ,获得积分10
1秒前
繁荣的萝莉完成签到,获得积分10
1秒前
花开富贵完成签到,获得积分10
1秒前
2秒前
zho发布了新的文献求助10
3秒前
junze完成签到,获得积分10
4秒前
酷波er应助迪迪采纳,获得10
5秒前
7秒前
遇见未来完成签到,获得积分10
8秒前
双生客发布了新的文献求助10
9秒前
9秒前
Akim应助Falling采纳,获得10
9秒前
9秒前
QL完成签到,获得积分10
10秒前
小二郎应助兴奋雁蓉采纳,获得10
11秒前
xiaoguo发布了新的文献求助10
11秒前
123应助双生客采纳,获得10
12秒前
liuyuh完成签到,获得积分10
13秒前
14秒前
15秒前
求助完成签到,获得积分10
15秒前
达进发布了新的文献求助10
15秒前
16秒前
lou完成签到 ,获得积分10
17秒前
18秒前
19秒前
称心涵柳发布了新的文献求助10
20秒前
叶95发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
尛瞐慶成发布了新的文献求助10
23秒前
26秒前
灰光呀发布了新的文献求助10
26秒前
123应助ssy采纳,获得10
27秒前
27秒前
叶95完成签到,获得积分10
28秒前
yaoxc发布了新的文献求助10
29秒前
todayisirene发布了新的文献求助10
29秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796388
求助须知:如何正确求助?哪些是违规求助? 3341569
关于积分的说明 10306494
捐赠科研通 3058101
什么是DOI,文献DOI怎么找? 1678048
邀请新用户注册赠送积分活动 805789
科研通“疑难数据库(出版商)”最低求助积分说明 762815