Unrevealing the Halyomorpha halys Damage Fingerprint on Hazelnut Metabolome by Multiomic Platforms and AI-Aided Strategies

代谢组 指纹(计算) 生物 人工智能 计算机科学 代谢组学 生物信息学
作者
Simone Squara,Silvia T. Moraglio,Andrea Caratti,Angelica Fina,Erica Liberto,Carlo Bicchi,Christoph H. Weinert,Sebastian T. Soukup,Luciana Tavella,Chiara Cordero
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:72 (43): 24109-24129
标识
DOI:10.1021/acs.jafc.4c06888
摘要

The brown marmorated stink bug (Halyomorpha halys) poses a significant threat to hazelnut crops by affecting kernel development and causing quality defects, reducing the market value. While previous studies have identified bitter-tasting compounds in affected kernels, the impact of stink bug feeding on the hazelnut metabolome, particularly concerning aroma precursors, remains underexplored. This study aims to map the nonvolatile metabolome and volatilome of hazelnut samples obtained by caging H. halys on different cultivars in two locations to identify markers for diagnosing stink bug damage. Using a multiomic approach involving headspace solid-phase microextraction (HS-SPME), comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS), both raw and roasted hazelnuts are analyzed, with artificial intelligence (AI) and machine learning tools employed to explore data correlations. The study finds that the hazelnut metabolome and volatilome exhibit high chemical complexity with significant classes of compounds such as aldehydes, ketones, alcohols, and terpenes identified in both raw and roasted hazelnuts. Multivariate analysis indicates that the orchard location significantly impacts the metabolome, followed by damage type, with cultivar differences being less pronounced. Partial least-squares discriminant analysis (PLS-DA) models achieve high predictive accuracy for orchard location (99%) and damage type (≈80%), with the roasted volatilome showing the highest predictive accuracy. Correlation matrices reveal significant relationships between raw hazelnut metabolites and aroma compounds in roasted samples, suggesting potential markers for stink bug damage that could guide the quality assessment and mitigation strategies. Data fusion techniques further enhance classification performance, particularly in predicting damage type, underscoring the potential of integrating multiple data sets for comprehensive quality assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗蜜欧发布了新的文献求助10
1秒前
黑妖完成签到,获得积分10
2秒前
3秒前
jopaul发布了新的文献求助10
3秒前
科研通AI5应助稳重奇异果采纳,获得10
4秒前
木柟完成签到 ,获得积分10
5秒前
长安888发布了新的文献求助10
5秒前
周周完成签到,获得积分10
6秒前
dudu完成签到 ,获得积分10
7秒前
暮晓见完成签到 ,获得积分10
9秒前
所所应助美好雁荷采纳,获得10
10秒前
科研通AI2S应助Lucia采纳,获得10
12秒前
天啦噜完成签到 ,获得积分10
12秒前
嘻嘻哈哈完成签到 ,获得积分10
12秒前
清晨的小鹿完成签到,获得积分10
15秒前
jopaul完成签到,获得积分10
15秒前
15秒前
乐乐应助coffee333采纳,获得10
15秒前
李友健完成签到 ,获得积分10
16秒前
18秒前
科研通AI5应助仪小彤采纳,获得30
18秒前
19秒前
20秒前
21秒前
独指蜗牛完成签到 ,获得积分10
21秒前
罗蜜欧完成签到,获得积分10
22秒前
pjh发布了新的文献求助10
23秒前
24秒前
李爱国应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
25秒前
打打应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214323
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667567
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304