FLK: A filter with learned kinematics for real-time 3D human pose estimation

计算机科学 姿势 人工智能 计算机视觉 卡尔曼滤波器 运动学 滤波器(信号处理) 运动捕捉 噪音(视频) 三维姿态估计 运动(物理) 图像(数学) 物理 经典力学
作者
Enrico Martini,Michele Boldo,Nicola Bombieri
出处
期刊:Signal Processing [Elsevier BV]
卷期号:224: 109598-109598 被引量:1
标识
DOI:10.1016/j.sigpro.2024.109598
摘要

There is a growing interest in adopting 3D human pose estimation in safety-critical systems, from healthcare to Industry 5.0. Nevertheless, when applied in such settings, these neural networks may suffer from estimation inaccuracy. Besides imprecise or inconsistent annotations in the training dataset, the inaccuracy is caused by poor image quality, rare poses, dropped frames, or heavy occlusions in the scene. In addition, these scenarios often require the software results to have temporal constraints, such as real-time and zero- or low-latency, which make many of the filtering solutions proposed in the literature inapplicable. This paper proposes FLK, a Filter with Learned Kinematics, to refine 3D human motion data in real-time and at zero/low latency. The temporal core combines a Kalman filter and a low-pass filter, which learns the motion model through a recurrent neural network. The spatial core takes advantage of the biomechanical constraints of the human body to provide spatial coherency between keypoints. The combination of the cores allows the filter to adequately address different types of noise, from jittering to dropped frames. We test the filter on motion data from multiple datasets and seven 3D human pose estimation backbones, improving accuracy up to 140 mm with non-Gaussian noise and 53 mm with missing information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junn发布了新的文献求助10
刚刚
从容以山完成签到,获得积分10
刚刚
shisui应助wshwx采纳,获得30
1秒前
1秒前
1秒前
niu发布了新的文献求助10
2秒前
2秒前
Zhouyang发布了新的文献求助10
2秒前
Komorebi发布了新的文献求助10
3秒前
4秒前
小二郎应助thuuu采纳,获得10
4秒前
bohn123发布了新的文献求助10
5秒前
汉堡包应助东伯雪鹰采纳,获得10
5秒前
5秒前
酷波er应助赵维雪采纳,获得10
6秒前
Zayro完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Liu完成签到 ,获得积分10
7秒前
gfr123完成签到,获得积分10
7秒前
8秒前
大个应助小盆呐采纳,获得10
9秒前
10秒前
7777777发布了新的文献求助10
10秒前
drlq2022完成签到,获得积分10
11秒前
孤独如曼发布了新的文献求助10
11秒前
欢呼的棒棒糖完成签到,获得积分10
11秒前
刘浪发布了新的文献求助10
12秒前
13秒前
ding应助小杜采纳,获得10
14秒前
情怀应助筱煜采纳,获得10
14秒前
14秒前
14秒前
wenxiansci完成签到,获得积分0
14秒前
15秒前
doctorJ发布了新的文献求助10
15秒前
16秒前
freebird发布了新的文献求助50
18秒前
脑洞疼应助负责的方盒采纳,获得10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813105
求助须知:如何正确求助?哪些是违规求助? 3357645
关于积分的说明 10387401
捐赠科研通 3074798
什么是DOI,文献DOI怎么找? 1689018
邀请新用户注册赠送积分活动 812536
科研通“疑难数据库(出版商)”最低求助积分说明 767144