Underwater small target detection under YOLOv8-LA model

计算机科学 水下 卷积神经网络 人工智能 卷积(计算机科学) 计算 特征提取 模式识别(心理学) 采样(信号处理) 深度学习 领域(数学) 数据挖掘 人工神经网络 计算机视觉 算法 海洋学 地质学 数学 滤波器(信号处理) 纯数学
作者
Shaolin Qu,Can Cui,Jiale Duan,Yongling Lu,Zilong Pang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66950-w
摘要

Abstract In the realm of marine environmental engineering, the swift and accurate detection of underwater targets is of considerable significance. Recently, methods based on Convolutional Neural Networks (CNN) have been applied to enhance the detection of such targets. However, deep neural networks usually require a large number of parameters, resulting in slow processing speed. Meanwhile, existing methods present challenges in accurate detection when facing small and densely arranged underwater targets. To address these issues, we propose a new neural network model, YOLOv8-LA, for improving the detection performance of underwater targets. First, we design a Lightweight Efficient Partial Convolution (LEPC) module to optimize spatial feature extraction by selectively processing input channels to improve efficiency and significantly reduce redundant computation and storage requirements. Second, we developed the AP-FasterNet architecture for small targets that are commonly found in underwater datasets. By integrating depth-separable convolutions with different expansion rates into FasterNet, AP-FasterNet enhances the model’s ability to capture detailed features of small targets. Finally, we integrate the lightweight and efficient content-aware reorganization (CARAFE) up-sampling operation into YOLOv8 to enhance the model performance by aggregating contextual information over a large perceptual field and mitigating information loss during up-sampling.Evaluation results on the URPC2021 dataset show that the YOLOv8-LA model achieves 84.7% mean accuracy (mAP) on a single Nvidia GeForce RTX 3090 and operates at 189.3 frames per second (FPS), demonstrating that it outperforms existing state-of-the-art methods in terms of performance. This result demonstrates the model’s ability to ensure high detection accuracy while maintaining real-time processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石头完成签到,获得积分10
1秒前
dora发布了新的文献求助10
2秒前
waiting完成签到 ,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
仲半邪发布了新的文献求助10
6秒前
7秒前
早日发paper完成签到,获得积分10
7秒前
penguins完成签到,获得积分20
8秒前
evens发布了新的文献求助10
8秒前
dora发布了新的文献求助10
9秒前
英俊水池完成签到,获得积分10
9秒前
NexusExplorer应助wuwu采纳,获得100
10秒前
irene发布了新的文献求助10
11秒前
小二郎应助biggerxiaoshuaui采纳,获得10
11秒前
12秒前
从全世界路过完成签到 ,获得积分10
12秒前
科研通AI5应助陈帅帅采纳,获得50
18秒前
penguins发布了新的文献求助10
18秒前
18秒前
19秒前
嗯嗯完成签到 ,获得积分10
19秒前
21秒前
古娜拉黑暗之神完成签到,获得积分10
22秒前
An_Jing发布了新的文献求助10
22秒前
23秒前
irene完成签到,获得积分20
23秒前
24秒前
24秒前
zzh发布了新的文献求助10
24秒前
24秒前
xiaorain完成签到 ,获得积分10
25秒前
石榴姐姐完成签到,获得积分10
26秒前
27秒前
yuqi发布了新的文献求助10
27秒前
27秒前
izzhan发布了新的文献求助10
28秒前
田様应助千山孤风采纳,获得10
28秒前
28秒前
zzh完成签到,获得积分20
29秒前
缓慢语雪发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4297710
求助须知:如何正确求助?哪些是违规求助? 3823163
关于积分的说明 11969175
捐赠科研通 3464873
什么是DOI,文献DOI怎么找? 1900454
邀请新用户注册赠送积分活动 948410
科研通“疑难数据库(出版商)”最低求助积分说明 850772