Multi-Stream Concept Drift Self-Adaptation Using Graph Neural Network

概念漂移 计算机科学 数据流挖掘 数据流 图形 适应(眼睛) 数据挖掘 人工神经网络 人工智能 领域(数学) 任务(项目管理) 机器学习 理论计算机科学 电信 物理 数学 管理 纯数学 光学 经济
作者
Ming Zhou,Jie Lü,Yiliao Song,Guangquan Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (12): 12828-12841 被引量:6
标识
DOI:10.1109/tkde.2023.3272911
摘要

Concept drift is the phenomenon where the data distribution in a data stream changes over time. It is a ubiquitous problem in the real-world, for example, a traffic accident would cause a jam in a certain period, leading to a distribution change in traffic speed. Most research in the concept drift field focuses on single data stream, however, few of them consider multi-stream environments which are more in line with the application needs. To fill this gap, we propose a multi-stream prediction setting and a multi-stream concept drift self-adaptation framework using graph neural network, named SAGN. In SAGN, we reconsider the learning procedure of GNN-based predictors from an aspect of concept drift adaptation for multi-stream. By this design, the prediction task is converted into online streaming data tasks in sub-graphs. Each sub-graph corresponds to an adaptation target and will be updated over time. In this way, locally we can overcome drift in each sub-graph by a designed adaptation technique, and globally the correlation between different data streams is well-preserved as a graph structure. Therefore, whether drift occurs or not, in one or several streams, SAGN can provide consistently accurate prediction results. We comprehensively tested SAGN on both synthetic and real-world, drift and non-drift data in the multi-step prediction task. The experiment results show that SAGN is able to achieve state-of-the-art performance in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuangxiong完成签到,获得积分10
1秒前
Nancy发布了新的文献求助30
2秒前
2秒前
小草完成签到,获得积分10
3秒前
6秒前
wsh123发布了新的文献求助10
6秒前
7秒前
KBRS发布了新的文献求助10
9秒前
脑洞疼应助高高的天晴采纳,获得10
14秒前
眉书初完成签到 ,获得积分10
15秒前
李萌萌完成签到 ,获得积分10
17秒前
璐璐完成签到 ,获得积分10
17秒前
深情安青应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
22秒前
华仔应助EineK采纳,获得30
23秒前
平常的毛豆应助hughd采纳,获得30
24秒前
体贴的雁菱完成签到,获得积分10
25秒前
整齐的忆彤完成签到,获得积分10
27秒前
舒心的含芙关注了科研通微信公众号
30秒前
lyh2234发布了新的文献求助10
31秒前
Jasper应助xiecishan采纳,获得10
32秒前
32秒前
朴实幼荷发布了新的文献求助10
36秒前
LMX完成签到 ,获得积分10
39秒前
甜甜的冬灵完成签到,获得积分20
40秒前
乐乐应助完美芒果采纳,获得10
41秒前
41秒前
42秒前
脑洞疼应助火火采纳,获得10
45秒前
大模型应助坚定的诗双采纳,获得10
45秒前
王石雨晨完成签到 ,获得积分10
46秒前
歼击机88发布了新的文献求助10
47秒前
xiecishan发布了新的文献求助10
47秒前
hsuh10完成签到,获得积分10
49秒前
科研通AI5应助lyh2234采纳,获得20
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327403
关于积分的说明 10230923
捐赠科研通 3042284
什么是DOI,文献DOI怎么找? 1669963
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804