材料科学
热电效应
薄膜
外延
热电材料
正交晶系
塞贝克系数
光电子学
基质(水族馆)
微晶
单晶
热导率
电阻率和电导率
铟
纳米技术
晶体结构
结晶学
复合材料
化学
电气工程
冶金
图层(电子)
物理
工程类
地质学
海洋学
热力学
作者
Marijn W. van de Putte,Mark Huijben
标识
DOI:10.1016/j.apsusc.2023.157034
摘要
To enable the realization of miniaturized thermoelectric energy generation (TEG) devices for autonomous wireless sensors, high-quality thin film architectures are required. Although tin selenide (SnSe) has been identified as a promising thermoelectric material exhibiting ZT values up to 2.6 at 923 K for single crystals, most thin film studies evaluated polycrystalline or textured SnSe samples. Here, we have explored for the first time the impact of epitaxial alignment of the orthorhombic SnSe crystal structure on an orthorhombic DyScO3 substrate, in strong contrast to the few previous studies on cubic substrates. The achieved (1 0 0)-oriented single crystalline SnSe thin films exhibit the formation of two SnSe domain types. The in-plane electrical conductivity along the (b,c)-plane shows an abrupt increase above 400 K instead of the typical steady increase. The in-plane Seebeck coefficients exhibit very similar values as single crystals, leading to a maximum power factor of about 6.0 μW·K−2·cm−1. For these SnSe thin films, exhibiting two domain variants with in-plane alignment of the (b,c)-plane, a typical low thermal conductivity is expected, demonstrating the effectiveness of epitaxial alignment to enhance thermoelectric performance and to enable the realization of miniaturized thermoelectric energy generation (TEG) devices for autonomous wireless sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI