A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning

计算机科学 人工智能 桥接(联网) 不确定度量化 机器学习 代表(政治) 信念修正 证据推理法 深度学习 管理科学 商业决策图 决策支持系统 计算机网络 政治 政治学 法学 经济
作者
Zhen Guo,Zelin Wan,Qisheng Zhang,Xujiang Zhao,Qi Zhang,Lance Kaplan,Audun Jøsang,Dong Hyun Jeong,Feng Chen,Jin-Hee Cho
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 101987-101987 被引量:5
标识
DOI:10.1016/j.inffus.2023.101987
摘要

An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Machine/deep learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in Knowledge representation and reasoning (KRR) since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. Based on our in-depth literature review, only a few studies have leveraged mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. Our present survey paper discusses major belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. Particularly, we discuss three main approaches leveraging belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Through an in-depth understanding of the extensive survey on this topic, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and future research directions. This paper conducts an extensive survey by bridging belief theories and deep learning in reasoning and quantifying uncertainty to help researchers initiate uncertainty and decision-making research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangdada完成签到,获得积分10
刚刚
刚刚
Lucas应助sandaomi采纳,获得10
1秒前
freedom发布了新的文献求助10
1秒前
1秒前
1秒前
lutao完成签到,获得积分10
2秒前
XIA发布了新的文献求助10
2秒前
2秒前
2秒前
小巧酸奶发布了新的文献求助10
3秒前
4秒前
hewd3发布了新的文献求助10
5秒前
宽宽发布了新的文献求助50
5秒前
机灵的衬衫完成签到 ,获得积分10
5秒前
6秒前
爆米花应助Howll采纳,获得10
6秒前
6秒前
6秒前
xiaosun完成签到,获得积分10
7秒前
ZhaoCun发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助Twistzz采纳,获得80
8秒前
9秒前
9秒前
9秒前
freedom完成签到,获得积分10
10秒前
10秒前
迷路远航完成签到,获得积分10
10秒前
10秒前
CipherSage应助kily采纳,获得10
11秒前
天蓝完成签到,获得积分10
11秒前
爆米花应助喵喵喵采纳,获得10
11秒前
12秒前
万能图书馆应助yang采纳,获得10
12秒前
宽宽完成签到,获得积分10
12秒前
黄鱼面发布了新的文献求助10
13秒前
吃狗粮的猫完成签到 ,获得积分10
13秒前
ZhaoCun完成签到,获得积分10
13秒前
拼搏忆文发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886324
求助须知:如何正确求助?哪些是违规求助? 4171259
关于积分的说明 12944161
捐赠科研通 3931774
什么是DOI,文献DOI怎么找? 2157191
邀请新用户注册赠送积分活动 1175636
关于科研通互助平台的介绍 1080152