M2FNet: Multimodal Fusion Network for Airport Runway Subsurface Defect Detection Using GPR Data

探地雷达 计算机科学 遥感 人工智能 地质学 模式识别(心理学) 雷达 电信
作者
Nansha Li,Renbiao Wu,Haifeng Li,Huaichao Wang,Zhongcheng Gui,Dezhen Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:2
标识
DOI:10.1109/tgrs.2023.3308205
摘要

Ground penetrating radar (GPR) is widely used for detecting airport runway subsurface defects. The trailing interference in the GPR data disguises subsurface defect responses, which seriously affects the accuracy of subsurface defect detection. To tackle the challenge of subsurface defects detection under trailing interference in real scenarios, a new multi-modal fusion network referred to as M 2 FNet is proposed. Based on the premise that the trailing signal is highly similar across all adjacent A-scans, the model employs a transformer encoder to extract global features of the signal with long-distance correlation. In contrast, the subsurface defects only show echo characteristics in a few adjacent B-scans. The phase of the trailing and the target signal is opposite, which is easy to be discovered from the Top-scan view. Thus, a hybrid convolutional neural network structure is used to extract local features from GPR images of different views. This dual network structure extremely enhance the representation learning of GPR data. In order to investigate various subsurface defects and trailing interference collected by multiple GPR systems under different conditions, the first large-scale hybrid dataset called ASD-GPR is created. Transfer learning is employed to enhance the model's ability to detect rare defects by fine-tuning it for real-world situations, differing from synthetic training data scenarios. The results of the experiments reveal that M 2 FNet outperforms state-of-the-art object detection methods in various real-world scenarios, demonstrating superior performance in detecting subsurface defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呆萌的雁荷完成签到,获得积分10
2秒前
2秒前
3秒前
顺利顺利发布了新的文献求助10
3秒前
Yuan发布了新的文献求助10
5秒前
zzt发布了新的文献求助10
5秒前
5秒前
苦哈哈完成签到,获得积分0
6秒前
阿北完成签到,获得积分10
6秒前
DT发布了新的文献求助10
6秒前
材袅完成签到,获得积分10
7秒前
SciGPT应助bkxsbac.ka采纳,获得10
8秒前
cannon8发布了新的文献求助10
9秒前
烟花应助www采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
wanci应助gao采纳,获得10
12秒前
桐桐完成签到,获得积分0
12秒前
Jasper应助大喵采纳,获得10
13秒前
丘比特应助金帛心兑采纳,获得10
13秒前
Hello应助Lemuel采纳,获得10
14秒前
sping发布了新的文献求助10
14秒前
xx发布了新的文献求助30
14秒前
大个应助夏定海采纳,获得10
17秒前
脑洞疼应助程公子采纳,获得10
18秒前
19秒前
久久应助ID27149采纳,获得10
19秒前
曾经凡之完成签到,获得积分10
20秒前
www完成签到,获得积分10
21秒前
runpeng完成签到,获得积分10
21秒前
太和竹签完成签到 ,获得积分10
22秒前
22秒前
小玉米发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
exile77完成签到,获得积分10
24秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3879870
求助须知:如何正确求助?哪些是违规求助? 3422202
关于积分的说明 10728149
捐赠科研通 3146954
什么是DOI,文献DOI怎么找? 1736240
邀请新用户注册赠送积分活动 838247
科研通“疑难数据库(出版商)”最低求助积分说明 783704