RustGraph: Robust Anomaly Detection in Dynamic Graphs by Jointly Learning Structural-Temporal Dependency

计算机科学 异常检测 人工智能 渲染(计算机图形) 图形 模式识别(心理学) 数据挖掘 理论计算机科学 机器学习
作者
Jianhao Guo,Siliang Tang,Juncheng Li,Kaihang Pan,Lingfei Wu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (7): 3472-3485 被引量:2
标识
DOI:10.1109/tkde.2023.3328645
摘要

Dynamic graph-based data are ubiquitous in the real world, such as social networks, finance systems, and traffic flow. Fast and accurately detecting anomalies in these dynamic graphs is of vital importance. However, despite promising results the current anomaly detection methods have achieved, there are two major limitations when coping with dynamic graphs. The first limitation is that the topological structures and the temporal dynamics have been modeled separately, resulting in less expressive features for detection. The second limitation is that the models have been trained by unreliable noisy labels generated by random negative sampling, rendering it severely vulnerable to subtle perturbations. To overcome the above limitations, we propose RustGraph, a robust anomaly detection framework by jointly learning structural-temporal dependency in dynamic graphs. To this end, we design a variational graph auto-encoder with informative prior that simultaneously encodes both graph structural and temporal information. Then we introduce a fine-grained contrastive learning method to learn better node representations by utilizing the temporal consistency between two snapshots. Furthermore, we formulate the noisy label learning problem for anomaly detection in dynamic graph, and then propose a robust anomaly detector to improve the model performance by leveraging learned graph structure signal. Our extensive experiments on six real-world datasets demonstrate the proposed RustGraph method achieves state-of-the-art performance with an average of 3.64% improvement on AUC-ROC metric compared with all baselines. The codes are available at https://github.com/aubreygjh/RustGraph .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助鲜艳的访风采纳,获得10
刚刚
张光光发布了新的文献求助10
刚刚
赘婿应助咸蛋黄豆腐采纳,获得10
1秒前
1秒前
华仔应助fighting采纳,获得10
1秒前
故事讲完啦完成签到,获得积分10
1秒前
sunny心晴完成签到 ,获得积分10
1秒前
怕黑的班完成签到,获得积分10
2秒前
杰克完成签到,获得积分10
2秒前
加绒完成签到,获得积分10
2秒前
打打应助aser采纳,获得10
2秒前
2秒前
2秒前
3秒前
王云孜发布了新的文献求助10
3秒前
3秒前
luct发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5u关注了科研通微信公众号
5秒前
Jason完成签到,获得积分10
5秒前
5秒前
FashionBoy应助111采纳,获得10
6秒前
6秒前
英姑应助ll采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Yolo完成签到,获得积分10
7秒前
在水一方应助www采纳,获得10
7秒前
dd发布了新的文献求助10
8秒前
8秒前
8秒前
852应助luct采纳,获得10
8秒前
9秒前
秦奴弋发布了新的文献求助10
9秒前
cnuwxc关注了科研通微信公众号
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786411
求助须知:如何正确求助?哪些是违规求助? 3332144
关于积分的说明 10254163
捐赠科研通 3047524
什么是DOI,文献DOI怎么找? 1672571
邀请新用户注册赠送积分活动 801371
科研通“疑难数据库(出版商)”最低求助积分说明 760178